Skip to main content
Log in

Computational Power of Infinite Quantum Parallelism

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Recent works have independently suggested that quantum mechanics might permit procedures that fundamentally transcend the power of Turing Machines as well as of ‘standard’ Quantum Computers. These approaches rely on and indicate that quantum mechanics seems to support some infinite variant of classical parallel computing.

We compare this new one with other attempts towards hypercomputation by separating (1) its %principal computing capabilities from (2) realizability issues. The first are shown to coincide with recursive enumerability; the second are considered in analogy to ‘existence’ in mathematical logic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  • Adamyan, V. A., Calude, C. S., and Pavlov, B. S. (2004). Transcending the limits of Turing computability. T. Hida, K. Saito, S. Si, (ed), Quantum Information Complexity. Proceedings of Meijo Winter School 2003, World Scientific, Singapore,pp. 119–137. %!http://arXiv.org/quant-ph/ 0304128!

  • Atallah, M. J. (ed.) (1999). Algorithms and Theory of Computation Handbook, CRC Press, Boca Raton, Florida.

  • Berlekamp, E. R., Conway, J. H., and Guy, R. K. (2004). Winning Ways for Your Mathematical Plays, vol. 4, 2nd Edn., Academic Press, New York.

  • Beggs, E. J. and Tucker, J. V. (2004). Computations via Experiments with Kinematic Systems, Technical Report 5–2004, Department of Computer Science, University of Wales Swansea.

  • Benioff, P. (1980). The computer as a physical system: A microscopic quantum mechanical Hamiltonian model of computers as represented by Turing Machines. Journal of Statistical Physics 22, 563– 591.

    Article  MathSciNet  ADS  Google Scholar 

  • Bennett, C. H. and Landauer, R. (1985). The fundamental physical limits of computation. Scientific American 253(1), 48–56.

    Article  Google Scholar 

  • Blass, A. (1984). Existence of bases implies the axiom of choice. Axiomatic Set Theory, Contemporary Mathematics 31, 31–33.

    MATH  MathSciNet  Google Scholar 

  • Blum, L., Shub, M., and Smale, S. (1989). On a theory of computation and complexity over the real numbers: NP-completeness, recursive functions, and universal machines. Bulletin of the American Mathematical Society 21, 1–46.

    Article  MathSciNet  MATH  Google Scholar 

  • Burgin, M. and Klinger, A. (eds.) (2004). Super-recursive algorithms and hypercomputation. vol. 317. In Theoretical Computer Science, Elsevier, Amsterdam.

  • Calude, C. S., Dinneen, M. J., and Svozil, K. (2001). Reflections on quantum computing. In Complexity, Vol. 6(1), Wiley, New York.

  • Calude, C. S., Dinneen, M. J., and Peper, F. (eds.) (2002). Unconventional Models of Computation, Vol. 2509. In Lecture Notes in Computer Science, Springer, Heidelberg.

  • Calude, C. S. and Pavlov, B. (2002). Coins, quantum measurements, and Turing's barrier. In Quantum Information Processing, Vol. 1, Plenum, New York, pp. 107–127.

  • Copeland, J. (1997). The broad conception of computation. American Behavioural Scientist 40, 690–716.

    Google Scholar 

  • Copeland, J. (2002). Hypercomputation. Minds and Machines 12, 461–502.

    Article  MATH  Google Scholar 

  • Copeland, J. and Proudfoot, D. (1999). Alan Turing's forgotten ideas in computer science. Scientific American 280(4), 98–103.

    Article  Google Scholar 

  • Du, D.-Z. and Ker-I Ko (2000). Theory of Computational Complexity, Wiley, New York.

  • Eberbach, E. and Wegner, P. (2003). Beyond Turing Machines. Bulletin of the European Association for Theoretical Computer Science 81, 279–304.

    MathSciNet  MATH  Google Scholar 

  • van Emde Boas, P., Spaan, E., and Torenvliet, L. (1989). Nondeterminism, fairness and a fundamental analogy. The Bulletin of the European Association for Theoretical Computer Science 37, 186– 193.

    MATH  Google Scholar 

  • Etesi, G. and Németi, I. (2002). Non-Turing computations via Malament–Hogarth Space–Times. International Journal of Theoretical Physics 41(2), 341–370.

    Article  MathSciNet  MATH  Google Scholar 

  • M. Fürer: “The tight deterministic time hierarchy”, % pp.8-16 in Proc. 14th ACM Symposium on Theory of Computing % (1982).

  • Geroch, R. and Hartle, J. B. (1986). Computability and physical theories. Foundations of Physics 16(6), 533–550.

    Article  MathSciNet  ADS  Google Scholar 

  • del, K. (1940). The Consistency of the Axiom of Choice and of the Generalized Continuum-Hypothesis With the Axioms of Set Theory, Princeton University Press, Princeton.

  • Gruska, J. (1999). Quantum Computing, McGraw-Hill, New York.

  • Hamkins, J. D. and Lewis, A. (2000). Infinite time Turing machines. Journal of Symbolic Logic 65(2), 567–604.

    MathSciNet  MATH  Google Scholar 

  • Hogarth, M. L. (1992). Does general relativity allow an observer to view an eternity in a finite time?. Foundations of Physics Letters 5(2), 173–181.

    Article  MathSciNet  ADS  Google Scholar 

  • Hopcroft, J. E., Motwani, R., and Ullman, J. D. (2001). Introduction to Automata Theory, Languages, and Computation, Addison-Wesley, Reading, MA.

  • Kieu, T. (2003). Computing the non-computable. Contemporary Physics 44(1), 51–71.

    Article  ADS  Google Scholar 

  • Kieu, T. (2003). Quantum algorithm for Hilbert's Tenth Problem. International Journal of Theoretical Physics 42, 1461–1478.

    Article  MATH  MathSciNet  Google Scholar 

  • Matiyasevich, Y. V. (1970). Enumerable sets are diophantine. Soviet Mathematics. Doklady 11, 354–357.

    MATH  Google Scholar 

  • Ord, T. (2002). Hypercomputation: Computing more than the Turing machine, Honours Thesis, University of Melbourne, Melbourne; available from \verb!http://arXiv.org/math.LO/0209332.!

  • Odifreddi, P. (1989). Classical Recursion Theory, North-Holland, Amsterdam.

  • Shagrir, O. and Pitowsky, I. (2003). Physical hypercomputation and the Church–Turing Hypothesis. Minds and Machines 13, 87–101.

    Article  MATH  Google Scholar 

  • Soare, R. I. (1987). Recursively Enumerable Sets and Degrees, Springer, Heidelberg.

  • Turing, A. M. (1936). On computable numbers, with an application to the Entscheidungsproblem. Proceedings of the London Mathematical Society 42(2), 230–265.

    MATH  Google Scholar 

  • Turing, A. M. (1939). Systems of logic based on ordinals. Proceedings of the London Mathematical Society 45, 161–228. %

    MATH  Google Scholar 

  • Yao, A. C.-C. (2003). Classical physics and the Church–Turing Thesis. Journal of the Association for Computing Machinery 50(1), 100–105.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Ziegler.

Additional information

PACS (2003): 03.67.

Supported by DFG project Zi1009/1-1.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ziegler, M. Computational Power of Infinite Quantum Parallelism. Int J Theor Phys 44, 2059–2071 (2005). https://doi.org/10.1007/s10773-005-8984-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-005-8984-0

Key Words

Navigation