Skip to main content
Log in

Effect of Dissolved Air on the Density and Refractive Index of Water

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The effect of dissolved air on the density and the refractive index of liquid water is studied from 0 to 50° C. The density effect is calculated from the best available values of Henry’s constants and partial molar volumes for the components of air; the results are in agreement with some previous experimental studies, but not others. The refractive-index effect is calculated as a function of wavelength from the same information, plus the refractivities of the atmospheric gases. Experimental measurements of the refractive-index effect are reported at both visible and ultraviolet wavelengths; the measured and calculated values are in reasonable agreement. The magnitude of the refractive-index change, while small, is several times larger than a previous estimate in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. International Union of Pure and Applied Chemistry, Recommended Reference Materials for the Realization of Physicochemical Properties, K. N. Marsh, ed. (Blackwell Scientific, New York, 1987).

  2. J.H. Burnett S.G. Kaplan (2004) J. Microlith. Microfab.Microsys 3 68 Occurrence Handle10.1117/1.1632501

    Article  Google Scholar 

  3. B. Smith (2004) OE Magazine 4 IssueID7 22

    Google Scholar 

  4. I. Lauder (1959) Aust. J. Chem 12 40

    Google Scholar 

  5. F.J. Millero R.T. Emmet (1976) J. Mar. Res 34 15

    Google Scholar 

  6. H. Watanabe K. Iizuka (1981) Jpn. J. Appl. Phys 20 1979 Occurrence Handle10.1143/JJAP.20.1979

    Article  Google Scholar 

  7. H. Watanabe K. Iizuka (1985) Metrologia 21 19 Occurrence Handle10.1088/0026-1394/21/1/005

    Article  Google Scholar 

  8. N. Bignell (1983) Metrologia 19 57 Occurrence Handle10.1088/0026-1394/19/2/002

    Article  Google Scholar 

  9. N. Bignell (1986) Metrologia 23 207 Occurrence Handle10.1088/0026-1394/23/4/005

    Article  Google Scholar 

  10. Girard G., Coarasa M.-J., in Precision Measurement and Fundamental Constants II, NBS Special Publication 617, B. N. Taylor and W. D. Phillips, eds. (U.S. Government Printing Office, Washington, 1984), p. 453.

  11. G.S. Kell (1977) J. Phys. Chem. Ref. Data 6 1109

    Google Scholar 

  12. L.W. Tilton J.K. Taylor (1938) J. Res. Nat. Bur. Stand. 20 419

    Google Scholar 

  13. P. Giacomo (1982) Metrologia 18 33 Occurrence Handle10.1088/0026-1394/18/1/006

    Article  Google Scholar 

  14. Lemmon E.W., McLinden M.O., and Huber M.L., Reference Fluid Thermodynamic and Transport Properties, NIST Standard Reference Database 23, Version 7.0 (National Institute of Standards and Technology, Gaithersburg, Maryland, 2002).

  15. T.R. Rettich R. Battino E. Wilhelm (1984) J. Solution Chem. 13 335 Occurrence Handle10.1007/BF00645706

    Article  Google Scholar 

  16. T.R. Rettich R. Battino E. Wilhelm (2000) J. Chem Thermodyn. 32 1145 Occurrence Handle10.1006/jcht.1999.0581

    Article  Google Scholar 

  17. T.R. Rettich R. Battino E. Wilhelm (1992) J. Solution Chem. 21 987 Occurrence Handle10.1007/BF00650874

    Article  Google Scholar 

  18. D. Krause B.B. Benson (1989) J. Solution Chem. 18 823 Occurrence Handle10.1007/BF00685062

    Article  Google Scholar 

  19. H.S. Harned R. Davis SuffixJr. (1943) J. Am. Chem. Soc. 65 2030 Occurrence Handle10.1021/ja01250a059

    Article  Google Scholar 

  20. J.J. Carroll J.D. Slupsky A.E. Mather (1991) J. Phys Chem. Ref. Data 20 1201

    Google Scholar 

  21. W. Wagner A. Pruss (1993) J. Phys. Chem. Ref. Data 22 783

    Google Scholar 

  22. N. Bignell (1984) J. Phys. Chem. 88 5409 Occurrence Handle10.1021/j150666a060

    Article  Google Scholar 

  23. T. Zhou R. Battino (2001) J. Chem. Eng. Data 46 331 Occurrence Handle10.1021/je000215o

    Article  Google Scholar 

  24. E.W. Tiepel K.E. Gubbins (1972) J. Phys. Chem. 76 3044 Occurrence Handle10.1021/j100665a024

    Article  Google Scholar 

  25. J.C. Moore R. Battino T.R. Rettich Y.P. Handa E. Wilhelm (1982) J. Chem. Eng. Data 27 22 Occurrence Handle10.1021/je00027a005

    Article  Google Scholar 

  26. L. Hnědkovský R.H. Wood V. Majer (1996) J. Chem Thermodyn. 28 125 Occurrence Handle10.1006/jcht.1996.0011

    Article  Google Scholar 

  27. E.L. Shock H.C. Helgeson (1988) Geochim. Cosmochim. Acta 52 2009 Occurrence Handle10.1016/0016-7037(88)90181-0

    Article  Google Scholar 

  28. Y. Marcus (1997) Ion Properties Marcel Dekker New York

    Google Scholar 

  29. W. Wagner A. Pruß (2002) J. Phys. Chem. Ref. Data 31 387 Occurrence Handle10.1063/1.1461829

    Article  Google Scholar 

  30. Harvey A.H., Peskin A.P., and Klein S.A., NIST/ASME Steam Properties, NIST Standard Reference Database 10, Version 2.2 (National Institute of Standards and Technology, Gaithersburg, Maryland, 2000).

  31. M. Tanaka G. Girard R. Davis A. Peuto N. Bignell (2001) Metrologia 38 301 Occurrence Handle10.1088/0026-1394/38/4/3

    Article  Google Scholar 

  32. A.H. Harvey J.S. Gallagher J.M.H. Levelt Sengers (1998) J. Phys. Chem. Ref. Data 27 761

    Google Scholar 

  33. K.P. Birch (1991) J. Opt. Soc. Am. A 8 647

    Google Scholar 

  34. U. Griesmann J.H. Burnett (1999) Opt. Lett. 24 1699

    Google Scholar 

  35. P.L. Smith M.C.E Huber W.H. Parkinson (1976) Phys Rev. A 13 1422 Occurrence Handle10.1103/PhysRevA.13.1422

    Article  Google Scholar 

  36. J.G. Old K.L. Gentili E.R. Peck (1971) J. Opt. Soc Am. 61 89

    Google Scholar 

  37. A. Bideau-Mehu Y. Guern R. Abjean A. Johannin-Gilles (1973) Opt. Commun. 9 432 Occurrence Handle10.1016/0030-4018(73)90289-7

    Article  Google Scholar 

  38. E.R. Peck D.J. Fisher (1964) J. Opt. Soc. Am. 54 1362

    Google Scholar 

  39. E.R. Peck B.N. Khanna (1966) J. Opt. Soc. Am. 56 1059

    Google Scholar 

  40. Kaplan S.G., Burnett J.H., Appl. Opt., in press.

  41. R. Battino M. Banzhof M. Bogan E. Wilhelm (1971) Anal Chem. 43 806 Occurrence Handle10.1021/ac60301a026

    Article  Google Scholar 

  42. S.Y. Park J.Y. Kim J.B. Lee M.B. Esler R.S. Davis R.I. Wielgosz (2004) Metrologia 41 387 Occurrence Handle10.1088/0026-1394/41/6/005

    Article  Google Scholar 

  43. A. Picard H. Fang M. Gläser (2004) Metrologia 41 396 Occurrence Handle10.1088/0026-1394/41/6/006

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. H. Harvey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harvey, A.H., Kaplan, S.G. & Burnett, J.H. Effect of Dissolved Air on the Density and Refractive Index of Water. Int J Thermophys 26, 1495–1514 (2005). https://doi.org/10.1007/s10765-005-8099-0

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-005-8099-0

Keywords

Navigation