Skip to main content

Advertisement

Log in

Measuring the Toughness of Primate Foods and its Ecological Value

  • Published:
International Journal of Primatology Aims and scope Submit manuscript

Abstract

The mechanical properties of plant foods play an important role in the feeding process, being one of many criteria for food acceptance or rejection by primates. One of the simplest justifications for this statement is the general finding that primates tend to avoid foods with high fiber. Although fiber is largely tasteless, odorless, and colorless, it imparts texture, a sensation in the mouth related to the physical properties of foods. All primates encounter such mechanical resistance when they bite into plant food, and studies on humans show that an incisal bite facilitates quick oral assessment of a property called toughness. Thus, it is feasible that primates make similar assessments of quality in this manner. Here, we review methods of measuring the toughness of primate foods, which can be used either for making general surveys of the properties of foods available to primates or for establishing the mechanisms that protect these foods from the evolved form of the dentition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agrawal, K. R., & Lucas, P. W. (2003). Mechanics of the first bite. Proceedings of the Royal Society B, 270, 1277–1282.

    Article  PubMed  Google Scholar 

  • Agrawal, K. R., Ang, K. Y., Sui, Z., Tan, H. T. W., & Lucas, P. W. (2008). Methods of ingestion and incisal designs. In J. D. Irish & G. C. Nelson (Eds.), Technique and application in dental anthropology (pp. 349–363). Cambridge, UK: Cambridge University Press.

    Chapter  Google Scholar 

  • Ang, K. Y., Lucas, P. W., & Tan, H. T. W. (2006). Incisal orientation and biting efficiency. Journal of Human Evolution, 50, 663–672.

    Article  PubMed  CAS  Google Scholar 

  • Ang, K. Y., Lucas, P. W., & Tan, H. T. W. (2008). A novel way of measuring the fracture toughness of leaves and other thin films using a single inclined razor blade. The New Phytologist, 177, 830–837.

    Article  PubMed  Google Scholar 

  • Aranwela, N., Sanson, G., & Read, J. (1999). Methods of assessing leaf-fracture properties. The New Phytologist, 144, 369–383.

    Article  Google Scholar 

  • Ashby, M. F., Evans, A. G., Fleck, N. A., Hutchinson, J. W., Wadley, H. N. G., & Gibson, L. G. (2000). Metal foams: A design guide. Boston: Butterworth-Heinemann.

    Google Scholar 

  • Atkins, A. G., & Mai, Y.-W. (1979). On the guillotining of materials. Journal of Materials Science, 14, 2747–2754.

    Article  Google Scholar 

  • Atkins, A. G., & Mai, Y.-W. (1985). Elastic and plastic fracture. Chichester: Ellis Horwood.

    Google Scholar 

  • Byrne, R. W., & Byrne, J. M. E. (1993). Complex leaf-gathering skills of mountain gorillas (Gorilla g. beringei): Variability and standardization. American Journal of Primatology, 31, 241–261.

    Article  Google Scholar 

  • Chai, H., Lee, J. J.-W., Constantino, P., Lucas, P. W., & Lawn, B. R. (2009). Remarkable resilience of teeth. Proceedings of the National Academy of Sciences of the USA, 106, 7289–7293.

    Article  PubMed  CAS  Google Scholar 

  • Chapman, C. A., Chapman, L. J., Naughton-Treves, L., Lawes, M. J., & McDowell, L. R. (2004). Predicting folivorous primate abundance: Validation of a nutritional model. American Journal of Primatology, 65, 55–69.

    Article  Google Scholar 

  • Choong, M. F., Lucas, P. W., Ong, J. Y. S., Pereira, B. P., Tan, H. T. W., & Turner, I. M. (1992). Leaf fracture toughness and sclerophylly: Their correlations and ecological implications. The New Phytologist, 121, 597–610.

    Article  Google Scholar 

  • Coley, P. D. (1983). Herbivory and defensive characteristics of tree species in a lowland tropical rainforest. Ecological Monographs, 53, 209–233.

    Article  Google Scholar 

  • Coley, P. D., & Kursar, T. A. (1996). Anti-herbivore defenses of young tropical leaves: physiological constraints and ecological trade-offs. In S. S. Mulkey, R. L. Chazdon, & A. P. Smith (Eds.), Tropical forest plant ecophysiology (pp. 305–336). New York: Chapman & Hall.

    Chapter  Google Scholar 

  • Constantino, P. J., Markham, K. & Lucas, P. W. (in press). Tooth chipping as a tool to reconstruct primate diets. International Journal of Primatology.

  • Deane, A. (2009). First contact: Understanding the relationship between hominoid incisor curvature and diet. Journal of Human Evolution, 56, 263–274.

    Article  PubMed  Google Scholar 

  • Dominy, N. J. (2004). Color as an indicator of food quality to anthropoid primates: Ecological evidence and an evolutionary scenario. In C. Ross & R. F. Kay (Eds.), Anthropoid origins: New visions (pp. 615–644). New York: Kluwer Academic.

    Chapter  Google Scholar 

  • Dominy, N. J., Vogel, E. R., Yeakel, J. D., Constantino, P., & Lucas, P. W. (2008). Mechanical properties of plant underground storage organs and implications for dietary models of early hominins. Evolutionary Biology, 35, 159–175.

    Article  Google Scholar 

  • Edwards, C., Read, J., & Sanson, G. (2000). Characterising sclerophylly: Some mechanical properties of leaves from heath and forest. Oecologia, 123, 158–167.

    Article  Google Scholar 

  • Elgart-Berry, A. (2004). Fracture toughness of mountain gorilla (Gorilla gorilla beringei) food plants. American Journal of Primatology, 62, 275–285.

    Article  PubMed  Google Scholar 

  • Evans, A. G. (1990). Perspective on the development of high-toughness ceramics. Journal of the American Ceramic Society, 73, 187–206.

    Article  CAS  Google Scholar 

  • Ganzhorn, J. U. (1992). Leaf chemistry and the biomass of folivorous primates in tropical forests. Oecologia, 91, 540–547.

    Article  Google Scholar 

  • Gibson, L. J., Ashby, M. F., & Easterling, K. E. (1988). The structure and mechanics of the iris leaf. Journal of Materials Science, 23, 3041–3048.

    Article  Google Scholar 

  • Goh, S. M., Charalambides, M. N., & Williams, J. G. (2003). Mechanical properties and sensory texture assessment of cheeses. Journal of Texture Studies, 34, 181–201.

    Article  Google Scholar 

  • Goh, S. M., Charalambides, M. N., & Williams, J. G. (2005). On the mechanics of wire cutting of cheese. Engineering Fracture Mechanics, 72, 931–946.

    Article  Google Scholar 

  • Gordon, J. E. (1978). Structures: Or why things don't fall down. London: Penguin.

    Book  Google Scholar 

  • Gordon, J. E., & Jeronimidis, G. (1974). Work of fracture. Nature, 252, 116.

    Article  CAS  Google Scholar 

  • Henry, D., Macmillan, R., & Simpson, R. (1996). Measurement of the shear and tensile fracture properties of leaves of pasture grasses. Australian Journal of Agricultural Research, 47, 587–603.

    Article  Google Scholar 

  • Hill, D. A., & Lucas, P. W. (1996). Toughness and fiber content of major leaf foods of wild Japanese macaques (Macaca fuscata yakui) in Yakushima. American Journal of Primatology, 38, 221–231.

    Article  Google Scholar 

  • Hylander, W. L., Johnson, K. R., & Crompton, A. W. (1992). Muscle force recruitment and biomechanical modelling: An analysis of masseter muscle function during mastication in Macaca fascicularis. American Journal of Physical Anthropology, 88, 365–387.

    Article  PubMed  CAS  Google Scholar 

  • Jeronimidis, G. (1980). The fracture behavior of wood and the relations between toughness and morphology. Proceedings of the Royal Society B: Biological Sciences, 208, 447–460.

    Article  Google Scholar 

  • Kamyab, I., Chakrabarti, S., & Williams, J. G. (1998). Cutting cheese with wire. Journal of Materials Science, 33, 2763–2770.

    Article  CAS  Google Scholar 

  • Kay, R. F. (1975). The functional adaptations of primate molar teeth. American Journal of Physical Anthropology, 42, 195–215.

    Article  Google Scholar 

  • Keckes, K., Burgert, I., Frühmann, K., Müller, M., Kölln, K., Hamilton, M., et al. (2003). Cell-wall recovery after irreversible deformation of wood. Nature Materials, 2, 810–813.

    Article  PubMed  CAS  Google Scholar 

  • Khan, A. A., & Vincent, J. F. V. (1993). Anisotropy in the fracture properties of apple flesh as investigated by crack-opening tests. Journal of Materials Science, 28, 45–51.

    Article  Google Scholar 

  • Khan, A. A., & Vincent, J. F. V. (1996). Mechanical damage induced by controlled freezing in apple and potato. Journal of Texture Studies, 27, 143–157.

    Article  Google Scholar 

  • Lawn, B. R. (1993). Fracture of brittle solids (2nd ed.). Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Lucas, P. W. (2004). Dental functional morphology. Cambridge, UK: Cambridge University Press.

    Book  Google Scholar 

  • Lucas, P. W., & Pereira, B. (1990). Estimation of the fracture toughness of leaves. Functional Ecology, 4, 819–822.

    Article  Google Scholar 

  • Lucas, P. W., Choong, M. F., Tan, H. T. W., Turner, I. M., & Berrick, A. J. (1991). The fracture toughness of the leaf of the dicotyledon Calophyllum inophyllum L. (Guttiferae). Philosophical Transactions of the Royal Society B: Biological Sciences, 334, 95–106.

    Article  Google Scholar 

  • Lucas, P. W., Tan, H. T. W., & Cheng, P. Y. (1997). The toughness of secondary cell wall and woody tissue. Philosophical Transactions of the Royal Society B: Biological Sciences, 352, 341–352.

    Article  Google Scholar 

  • Lucas, P. W., Turner, I. M., Dominy, N. J., & Yamashita, N. (2000). Mechanical defences to herbivory. Annals of Botany, 86, 913–920.

    Article  Google Scholar 

  • Lucas, P. W., Constantino, P., Wood, B. A., & Lawn, B. R. (2008). Dental enamel as a dietary indicator in mammals. Bioessays, 30, 374–285.

    Article  PubMed  Google Scholar 

  • Lucas, P. W., Constantino, P. J., Chalk, J., Ziscovici, C., Wright, B. W., Fragaszy, D. M., et al. (2009). Indentation as a technique to assess the mechanical properties of fallback foods. American Journal of Physical Anthropology, 140, 643–652.

    Article  PubMed  Google Scholar 

  • Lucas, P. W., Osorio, D., Yamashita, N., Prinz, J. F., Dominy, N. J., & Darvell, B. W. (2011). Dietary analysis I: Physics. In J. Setchell & D. Curtis (Eds.), Field and laboratory methods in primatology (2nd ed., pp. 237–254). Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Milton, K. (1991). Pectin content of neotropical plant parts. Biotropica, 23, 90–92.

    Article  Google Scholar 

  • Oates, J. F., Whitesides, G. H., Davies, A. G., Waterman, P. G., Green, S. M., Dasilva, G., et al. (1990). Determinants of variation in tropical forest primate biomass: New evidence from West Africa. Ecology, 71, 328–343.

    Article  Google Scholar 

  • Onoda, Y., Schieving, F., & Anten, N. P. R. (2008). Effects of light and nutrient availability on leaf mechanical properties of Plantago major: A conceptual approach. Annals of Botany, 101, 727–736.

    Article  PubMed  Google Scholar 

  • Onoda, Y., et al. (2011). Global patterns of leaf mechanical properties. Ecology Letters, 14, 301–312.

    Article  PubMed  Google Scholar 

  • Osborn, J. W., Baragar, F. A., & Grey, P. (1987). The functional advantage of proclined incisors in man. In D. E. Russell, J. P. Santoro & D. Sigognean-Russell (Eds.), Teeth revisited: Proceedings of VII International Symposium on Dental Morphology. Memoirs du Musee National d’Histoire Naturelle, Paris (Serie C), 53, 445–458.

  • Paphangkorakit, J., & Osborn, J. W. (1997). The effect of pressure on a maximum incisal bite force in a man. Archives of Oral Biology, 42, 11–17.

    Article  PubMed  CAS  Google Scholar 

  • Paphangkorakit, J., & Osborn, J. W. (1998). Effects on human maximum bite force of biting on a softer or harder object. Archives of Oral Biology, 43, 833–839.

    Article  PubMed  CAS  Google Scholar 

  • Read, J., & Sanson, G. D. (2003). Characterizing sclerophylly: The mechanical properties of a diverse range of leaf types. The New Phytologist, 160, 81–99.

    Article  Google Scholar 

  • Sanson, G. (2006). The biomechanics of browsing and grazing. American Journal of Botany, 93, 1531–1545.

    Article  PubMed  Google Scholar 

  • Sui, Z. Q., Agrawal, K. R., Corke, H., & Lucas, P. W. (2006). Biting efficiency in relation to incisal angulation. Archives of Oral Biology, 51, 491–497.

    Article  PubMed  Google Scholar 

  • Teaford, M. F., Lucas, P. W., Ungar, P. S., & Glander, K. E. (2006). Mechanical defenses in leaves eaten by Costa Rican howling monkeys (Alouatta palliata). American Journal of Physical Anthropology, 129, 99–104.

    Article  PubMed  CAS  Google Scholar 

  • Tonooka, R. (2001). Leaf-folding behavior for drinking water by wild chimpanzees (Pan troglodytes verus) at Bossou, Guinea. Animal Cognition, 4, 325–334.

    Article  Google Scholar 

  • van Soest, P. J. (1994). Nutritional ecology of the ruminant. Ithaca, NY: Cornell University Press.

    Google Scholar 

  • Vincent, J. F. V. (1990). Fracture in plants. Advances in Botanical Research, 17, 235–282.

    Article  Google Scholar 

  • Vincent, J. F. V. (1992). Biomechanics—materials: A practical approach. Oxford: IRL Press.

    Google Scholar 

  • Vincent, J. F. V., Jeronimidis, G., Khan, A. A., & Luyten, H. (1991). The wedge fracture test: A new method for measurement of food texture. Journal of Texture Studies, 22, 45–57.

    Article  Google Scholar 

  • Vincent, J. F. V., Saunders, D. E. J., & Beyts, P. (2002). The use of stress intensity factor to quantify “hardness” and “crunchiness” objectively. Journal of Texture Studies, 33, 149–159.

    Article  Google Scholar 

  • Vogel, E. R., van Woerden, J. T., Lucas, P. W., Utami Atmoko, S. S., & van Schaik, C. P. (2008). Functional ecology and evolution of hominoid enamel thickness: Pan troglodytes schweinfurthii and Pongo pygmaeus wurmbii. Journal of Human Evolution, 55, 60–74.

    Article  PubMed  Google Scholar 

  • Vogel, E. R., Haag, L., Parker, G. G., Mitra-Setia, T., van Schaik, C. P., & Dominy, N. (2009). Foraging and ranging behavior during a fallback episode: Hylobates albibarbis and Pongo pygmaeus wurmbii compared. American Journal of Physical Anthropology, 140, 716–726.

    Article  PubMed  Google Scholar 

  • Williams, S. H., Wright, B. W., van den Truong, Daubert, C. R., & Vinyard, C. J. (2005). Mechanical properties of foods used in experimental studies of primate masticatory function. American Journal of Primatology, 67, 329–346.

    Article  PubMed  Google Scholar 

  • Wrangham, R., Conklin, N. L., Chapman, C. A., & Hunt, K. D. (1991). The significance of fibrous foods for Kibale Forest chimpanzees. Philosophical Transactions of the Royal Society B: Biological Sciences, 334, 171–178.

    Article  CAS  Google Scholar 

  • Wrangham, R. W., Conklin-Brittain, N. L., & Hunt, K. D. (1998). Dietary response of chimpanzees and cercopithecines to seasonal variation in fruit abundance. I. Antifeedants. International Journal of Primatology, 19, 949–970.

    Article  Google Scholar 

  • Wright, B. W. (2005). Craniodental biomechanics and dietary toughness in the genus Cebus. Journal of Human Evolution, 48, 473–492.

    Article  PubMed  Google Scholar 

  • Wright, I. J., & Cannon, K. (2001). Relationships between leaf lifespan and structural defences in a low-nutrient, sclerophyll flora. Functional Ecology, 15, 351–359.

    Article  Google Scholar 

  • Wright, W., & Illius, A. W. (1995). A comparative study of the fracture properties of 5 grasses. Functional Ecology, 9, 269–278.

    Article  Google Scholar 

  • Wright, B. W., Ulibarri, L., O’Brien, J., Sadler, B., Prodhan, R., Covert, H. H., et al. (2008). It’s tough out there: Variation in the toughness of ingested leaves and feeding behavior among four Colobinae in Vietnam. International Journal of Primatology, 29, 1455–1466.

    Article  Google Scholar 

  • Yamashita, N. (2003). Food procurement and tooth use in two sympatric lemur species. American Journal of Physical Anthropology, 121, 125–133.

    Article  PubMed  Google Scholar 

  • Yamashita, N., Vinyard, C. J., & Tan, C. L. (2009). Primate food mechanical properties in three sympatric species of Hapalemur in Ranomafana National Park, Madagascar. American Journal of Physical Anthropology, 139, 368–291.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter W. Lucas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lucas, P.W., Copes, L., Constantino, P.J. et al. Measuring the Toughness of Primate Foods and its Ecological Value. Int J Primatol 33, 598–610 (2012). https://doi.org/10.1007/s10764-011-9540-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10764-011-9540-9

Keywords

Navigation