Skip to main content

Advertisement

Log in

Evolutionary Robotic Approaches in Primate Gait Analysis

  • Published:
International Journal of Primatology Aims and scope Submit manuscript

Abstract

Understanding how primates move is particularly challenging because many of the experimentation techniques that would normally be available are unsuitable for ethical and conservation reasons. We therefore need to develop techniques that can maximize the data available from minimally intrusive experimentation. One approach for achieving this is to use evolutionary robotic techniques to build a musculoskeletal simulation and generate movement patterns that optimize some global parameter such as economy or performance, or to match existing kinematic data. If the simulation has a sufficiently high biofidelity and can match experimentally measured performance criteria then we can use it to predict aspects of locomotor mechanics that would otherwise be impossible to measure. This approach is particularly valuable when studying fossil primates because it can be based entirely on morphology and can generate movements spontaneously. A major question in human evolution is the origin of bipedal running and the role of elastic energy storage. By using an evolutionary robotics model of humanoid running we can show that elastic storage is required for efficient, high-performance running. Elasticity allows both energy recovery to minimize total energy cost and also power amplification to allow high performance. The most important elastic energy store on the human hind limb is the Achilles tendon: a feature that is at best weakly expressed among the African great apes. By running simulations both with and without this structure we can demonstrate its importance, and we suggest that identification of the presence or otherwise of this tendon—perhaps by calcaneal morphology or Sharpey’s fibers—is essential for identifying when and where in the fossil record human style running originated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aerts, P. (1998). Vertical jumping in Galago senegalensis: The quest for an obligate mechanical power amplifier. Philosophical Transactions: Biological Sciences, 353, 1607–1620.

    Article  Google Scholar 

  • Alexander, R. M. (1974). The mechanics of jumping by a dog (Canis familiaris). Journal of Zoology, 173, 549–573.

    Article  Google Scholar 

  • Alexander, R. M. (1992). A model of locomotion on compliant legs. Philosophical Transactions: Biological Sciences, 338, 189–198.

    Article  CAS  Google Scholar 

  • Alexander, R. M. (2002). Tendon elasticity and muscle function. Comparative Biochemistry and Physiology Part A, 133, 1001–1011.

    Article  Google Scholar 

  • Alexander, R. M. (2003). Principles of animal locomotion. Princeton: Princeton University Press.

    Google Scholar 

  • Alexander, R. M., & Jayes, A. S. (1983). Dynamic similarity hypothesis for the gaits of quadrupedal mammals. Journal of Zoology, 202, 557–582.

    Google Scholar 

  • Alexander, R. M., & Maloiy, G. M. (1984). Stride lengths and stride frequencies of primates. Journal of Zoology, 201, 135–152.

    Article  Google Scholar 

  • Alexander, R. M., Maloiy, G. M. O., Ker, R. F., Jayes, A. S., & Warui, C. N. (1982). The role of tendon elasticity in the locomotion of the camel. Journal of Zoology, 198, 293–313.

    Article  Google Scholar 

  • Bates, K. T., Manning, P. L., & Sellers, W. I. (In Press). Sensitivity analysis in evolutionary robotic simulations of bipedal dinosaur running. Journal of Vertebrate Paleontology.

  • Benjamin, M., Kumai, T., Milz, S., Boszczyk, B. M., Boszczyk, A. A., & Ralphs, J. R. (2002). The skeletal attachment of tendons—tendon ‘entheses’. Comparative Biochemistry and Physiology. Part A, Molecular & Integrative Physiology, 133, 931–945.

    Article  CAS  Google Scholar 

  • Bennett, M. B., Ker, R. F., Dimery, N. J., & Alexander, R. M. (1986). Mechanical properties of various mammalian tendons. Journal of Zoology, A209, 537–548.

    Google Scholar 

  • Biewener, A. A., & Blickhan, R. (1988). Kangaroo rat locomotion: Design for elastic energy storage or acceleration? Journal of Experimental Biology, 140, 243–255.

    PubMed  CAS  Google Scholar 

  • Biewener, A. A., Konieczynski, D. D., & Baudinette, R. V. (1998). In vivo muscle force-length behavior during steady-speed hopping in tammar wallabies. Journal of Experimental Biology, 201, 1681–1694.

    PubMed  CAS  Google Scholar 

  • Bojsen-Møller, F. (1979). Calcaneocuboid joint and stability of the longitudinal arch of the foot at high and low gear push off. Journal of Anatomy, 129, 165–176.

    PubMed  Google Scholar 

  • Bramble, D. M., & Lieberman, D. (2004). Endurance running and the evolution of Homo. Nature, 432, 345–352.

    Article  PubMed  CAS  Google Scholar 

  • Carlson, R. E., Fleming, L. L., & Hutton, W. C. (2000). The biomechanical relationship between the tendoachilles, plantar fascia and metatarsophalangeal joint dorsiflexion angle. Foot & Ankle International, 21, 18–25.

    CAS  Google Scholar 

  • Carrier, D. R. (1984). The energetic paradox of human running and hominid evolution. Current Anthropology, 25, 483–495.

    Article  Google Scholar 

  • Cavagna, G. A., Heglund, N. C., & Taylor, C. R. (1977). Mechanical work in terrestrial locomotion, two basic mechanisms for minimizing energy expenditure. American Journal of Physiology, 233, R243–R261.

    PubMed  CAS  Google Scholar 

  • Crompton, R. H., & Sellers, W. I. (2007). A consideration of leaping locomotion as a means of predator avoidance in prosimian primates. In K. A. I. Nekaris & S. L. Gursky (Eds.), Primate anti-predator strategies (pp. 127–145). New York: Springer.

    Chapter  Google Scholar 

  • Crompton, R. H., Li, Y., Wang, W., Günther, M. M., & Savage, R. (1998). The mechanical effectiveness of erect and “bent-hip, bent-knee” bipedal walking in Australopithecus afarensis. Journal of Human Evolution, 35, 55–74.

    Article  PubMed  CAS  Google Scholar 

  • Crompton, R. H., Li, Y., Thorpe, S. K., Wang, W. J., Savage, R., Payne, R., et al. (2003). The biomechanical evolution of erect bipedality. Courier Forschungsinstitut Senckenberg, 243, 115–126.

    Google Scholar 

  • Crompton, R. H., Vereecke, E. E., & Thorpe, S. K. S. (2008). Locomotion and posture from the common hominoid ancestor to fully modern hominins, with special reference to the last common panin/hominin ancestor. Journal of Anatomy, 212, 501–543.

    Article  PubMed  CAS  Google Scholar 

  • Daly, P. J., Kitaoka, H. B., & Chao, E. Y. S. (1992). Plantar fasciotomy for intractable plantar fasciitis: Clinical results and biomechanical evaluation. Foot and Ankle, 13, 188–195.

    PubMed  CAS  Google Scholar 

  • Dimery, N. J., Alexander, R. M., & Ker, R. F. (1986). Elastic extensions of leg tendons in the locomotion of horses (Equus caballus). Journal of Zoology, 210, 415–425.

    Article  Google Scholar 

  • Erdemir, A., & Piazza, S. J. (2004). Changes in foot loading following plantar fasciotomy: A computer modeling study. Journal of Biomechanical Engineering, 126, 237–243.

    Article  PubMed  Google Scholar 

  • Erdemir, A., Hamel, A. J., Fauth, A. R., Piazza, S. J., & Sharkey, N. A. (2004). Dynamic loading of the plantar aponeurosis in walking. Journal of Bone and Joint Surgery, 86, 546–552.

    PubMed  Google Scholar 

  • Frey, H. (1913). Der Musculus triceps surae in der Primatenreihe. Morphologische Jahrbuch, 47, 1–192.

    Google Scholar 

  • Full, R. J., & Tu, M. S. (1991). Mechanics of a rapid running insect—2-legged, 4-legged and 6-legged locomotion. Journal of Experimental Biology, 156, 215–231.

    PubMed  CAS  Google Scholar 

  • Heglund, N. C., & Taylor, C. R. (1988). Speed, stride frequency and energy-cost per stride—how do they change with body size and gait. Journal of Experimental Biology, 138, 301–318.

    PubMed  CAS  Google Scholar 

  • Hicks, J. H. (1954). The mechanics of the foot: II The plantar aponeurosis and the arch. Journal of Anatomy, 88, 25–31.

    PubMed  CAS  Google Scholar 

  • Hill, A. V. (1938). The heat of shortening and the dynamic constants of muscle. Proceedings of the Royal Society of London. Series B, Biological Sciences, 126, 136–195.

    Article  Google Scholar 

  • Hof, A. L., Elzinga, H., Grimmius, W., & Halbertsma, J. P. K. (2002). Speed dependence of averaged EMG profiles in walking. Gait & Posture, 16, 78–86.

    Article  CAS  Google Scholar 

  • Keller, T. S., Weisberger, A. M., Ray, J. L., Hasan, S. S., Shiavi, R. G., & Spengler, D. M. (1996). Relationship between vertical ground reaction force and speed during walking, slow jogging, and running. Clinical Biomechanics, 11, 253–259.

    Article  PubMed  Google Scholar 

  • Ker, R. F., Bennett, M. B., Bibby, S. R., Kester, R. C., & Alexander, R. M. (1987). The spring in the arch of the human foot. Nature, 325, 147–149.

    Article  PubMed  CAS  Google Scholar 

  • Kimura, T. (1996). The centre of gravity of the body during the ontogeny of chimpanzee bipedal walking. Folia Primatologica, 66, 126–136.

    Article  CAS  Google Scholar 

  • Kramer, P. A. (1999). Modelling the locomotor energetics of extinct hominids. Journal of Experimental Biology, 202, 2807–2818.

    PubMed  CAS  Google Scholar 

  • Larson, S. G., & Stern, J. T. (1986). EMG of scapulohumeral muscles in the chimpanzee during reaching and “arboreal” locomotion. American Journal of Anatomy, 176, 171–190.

    Article  PubMed  CAS  Google Scholar 

  • Larson, S. G., Stern, J. T., & Jungers, W. L. (1991). EMG of serratus anterior and trapezius in the chimpanzee—scapular rotators revisited. American Journal of Physical Anthropology, 85, 71–84.

    Article  PubMed  CAS  Google Scholar 

  • Lee, R. B., & DeVore, I. (1968). Man the hunter. Chicago: Aldine.

    Google Scholar 

  • Lichtwark, G. A. (2005). In vivo mechanical properties of the human Achilles tendon during one-legged hopping. Journal of Experimental Biology, 208, 4715–4725.

    Article  PubMed  CAS  Google Scholar 

  • Lichtwark, G. A., & Wilson, A. M. (2006). Interactions between the human gastrocnemius muscle and the Achilles tendon during incline, level and decline locomotion. Journal of Experimental Biology, 209, 4379–4388.

    Article  PubMed  CAS  Google Scholar 

  • Lichtwark, G. A., & Wilson, A. M. (2007). Is Achilles tendon compliance optimised for maximum muscle efficiency during locomotion? Journal of Biomechanics, 40, 1768–1775.

    Article  PubMed  CAS  Google Scholar 

  • Ma, S., & Zahalak, G. I. (1991). A distribution-moment model of energetics in skeletal muscle. Journal of Biomechanics, 24, 21–35.

    Article  PubMed  CAS  Google Scholar 

  • McGeer, T. (1992). Principles of walking and running. In R. M. Alexander (Ed.), Advances in comparative and environmental physiology 11. Mechanics of animal locomotion (pp. 114–140). Berlin: Springer-Verlag.

    Google Scholar 

  • Minetti, A. E., & Alexander, R. M. (1997). A theory of metabolic costs for bipedal gaits. Journal of Theoretical Biology, 186, 467–476.

    Article  PubMed  CAS  Google Scholar 

  • Nagano, A., Umberger, B. R., Marzke, M. W., & Gerritsen, K. G. M. (2005). Neuromusculoskeletal computer modeling and simulation of upright, straight-legged, bipedal locomotion of Australopithecus afarensis (A.L. 288–1). American Journal of Physical Anthropology, 126, 2–13.

    Article  PubMed  Google Scholar 

  • Neptune, R. R., & Sasaki, K. (2005). Ankle plantar flexor force production is an important determinant of the preferred walk-to-run transition speed. Journal of Experimental Biology, 208, 799–808.

    Article  PubMed  Google Scholar 

  • Nicolas, G., Multon, F., Berillon, G., & Marchal, F. (2007). From bone to plausible bipedal locomotion using inverse kinematics. Journal of Biomechanics, 40, 1048–1057.

    Article  PubMed  Google Scholar 

  • Nolfi, S., & Floreano, D. (2000). Evolutionary robotics. Cambridge: MIT Press.

    Google Scholar 

  • Pataky, T. C., Caravaggi, P., Savage, R., Parker, D., Goulermas, J. Y., Sellers, W. I., et al. (2008). New insights into the plantar pressure correlates of walking speed using pedobarographic statistical parametric mapping (pSPM). Journal of Biomechanics, 41, 1987–1994.

    Article  PubMed  Google Scholar 

  • Roberts, T. J., Marsh, R. L., Weyand, P. G., & Taylor, C. R. (1997). Muscular force in running turkeys: The economy of minimizing work. Science, 275, 1113–1115.

    Article  PubMed  CAS  Google Scholar 

  • Ryan, T., & Van Rietbergen, B. (2004). Mechanical significance of femoral head trabecular bone structure in Loris and Galago evaluated using micromechanical finite element models. American Journal of Physical Anthropology, 126, 82–96.

    Article  Google Scholar 

  • Sellers, W. I. (1996). A biomechanical investigation into the absence of leaping in the locomotor repertoire of the Slender Loris (Loris tardigradus). Folia Primatologica, 67, 1–14.

    CAS  Google Scholar 

  • Sellers, W. I., & Manning, P. L. (2007). Estimating dinosaur maximum running speeds using evolutionary robotics. Proceedings of the Royal Society of London. Series B, 274, 2711–2716.

    Article  PubMed  Google Scholar 

  • Sellers, W. I., Dennis, L. A., & Crompton, R. H. (2003). Predicting the metabolic energy costs of bipedalism using evolutionary robotics. Journal of Experimental Biology, 206, 1127–1136.

    Article  PubMed  CAS  Google Scholar 

  • Sellers, W. I., Dennis, L. A., Wang, W., & Crompton, R. H. (2004). Evaluating alternative gait strategies using evolutionary robotics. Journal of Anatomy, 204, 343–351.

    Article  PubMed  Google Scholar 

  • Sellers, W. I., Cain, G. M., Wang, W., & Crompton, R. H. (2005). Stride lengths, speed and energy costs in walking of Australopithecus afarensis: Using evolutionary robotics to predict locomotion of early human ancestors. Journal of the Royal Society Interface, 5, 431–441.

    Article  Google Scholar 

  • Silder, A., Whittington, B., Heiderscheit, B., & Thelen, D. G. (2007). Identification of passive elastic joint moment-angle relationships in the lower extremity. Journal of Biomechanics, 40, 2628–2635.

    Article  PubMed  Google Scholar 

  • Sockol, M. D., Raichlen, D., & Pontzer, H. (2007). Chimpanzee locomotor energetics and the origin of human bipedalism. Proceedings of the National Academy of Sciences of the United States of America, 104, 12265–12269.

    Article  PubMed  CAS  Google Scholar 

  • Srinivasan, M., & Ruina, A. (2006). Computer optimization of a minimal biped model discovers walking and running. Nature, 439, 72–75.

    Article  PubMed  CAS  Google Scholar 

  • Susman, R. L., & Stern, J. T. (1980). EMG of the interosseous and lumbrical muscles in the chimpanzee (Pan troglodytes) hand during locomotion. American Journal of Anatomy, 157, 389–397.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, C., & Rowntree, V. J. (1973). Running on two or on four legs: Which consumes more energy? Science, 179, 186–187.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, C., Caldwell, S. L., & Rowntree, V. J. (1972). Running up and down hills: Some consequences of size. Science, 178, 1096–1097.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, C. R., Heglund, N. C., & Maloiy, G. M. (1982). Energetics and mechanics of terrestrial locomotion, I: Metabolic energy consumption as a function of speed and body size in birds and mammals. Journal of Experimental Biology, 97, 1–21.

    PubMed  CAS  Google Scholar 

  • Thorpe, S. K. S., Crompton, R. H., & Wang, W. J. (2004). Stresses exerted in the hindlimb muscles of common chimpanzees (Pan troglodytes) during bipedal locomotion. Folia Primatologica, 75, 253–265.

    Article  CAS  Google Scholar 

  • Vogel, S. (1998). Cats’ paws and catapults: Mechanical worlds of nature and people. New York: W. W. Norton.

    Google Scholar 

  • Warren, G. L., Maher, R. M., & Higbie, E. J. (2004). Temporal patterns of plantar pressure and lower-leg muscle activity during walking: Effect of speed. Gait & Posture, 19, 91–100.

    Article  Google Scholar 

  • Wilson, S. W., & Watson, J. C. (2003). A catapult action for rapid limb protraction. Nature, 421, 35–36.

    Article  PubMed  CAS  Google Scholar 

  • Winter, D. A. (1990). Biomechanics and motor control of human movement. New York: Wiley.

    Google Scholar 

  • Witte, H., Hoffmann, H., Hackert, R., Schilling, C., Fischer, M. S., & Preuschoft, H. (2004). Biomimetic robotics should be based on functional morphology. Journal of Anatomy, 204, 331–342.

    Article  PubMed  Google Scholar 

  • Yamazaki, N. (1985). Primate bipedal walking. In S. Kondo (Ed.), Primate morphophysiology, locomotor analyses and human bipedalism (pp. 105–130). Tokyo: University of Tokyo Press.

    Google Scholar 

  • Yamazaki, N., Hase, K., Ogihara, N., & Hayamizu, N. (1996). Biomechanical analysis of the development of human bipedal walking by a neuro-musculo-skeletal model. Folia Primatologica, 66, 253–271.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Cliff Addison and the NW-GRID for providing the necessary high-performance computing power for this project and NERC and the Leverhulme Trust for providing funding. We also thank Todd Rae, Eishi Hirasaki, and Yuzuru Hamada for organizing the meeting and this special issue.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William Irvin Sellers.

Appendix

Appendix

This section describes the muscle model used. All equations are given in Mathematica format so that they can simply be copied into a notebook and solved as required. The muscle model consists of the standard Minetti and Alexander contraction model (Minetti and Alexander 1997) that represents concentric and eccentric contractions by the following equations (rearranged from the originals so that they incorporate linear rather than rotational quantities and altering the sign of the contraction direction so that a negative velocity represents shortening):Eccentric (vce > 0)

$$ eq1: = fce = = alpha\,f0\left( {1.8 + \left( {0.8\,k\left( {vce - 1.\,vmax} \right)} \right)/7.56\,vce + k\,vmax} \right) $$

Concentric (vce ≤ 0)

$$ eq2: = fce = = \left( {alpha\,f0\,k\left( {vce + vmax} \right)} \right)/\left( { - vce + k\,vmax} \right) $$

where

fce :

contractile element force (N)

alpha :

activation (0–1)

k :

shape constant (generally 0.17)

vce :

contractile element velocity (m/s)

vmax :

maximum shortening velocity (m/s)

f0 :

isometric force (N)

Serial and parallel springs are then added in the Hill style and are implemented using the following equations:

$$ eq3: = fce + fpe = = fse $$
$$ eq4: = fse = = ese\left( {lse - sse} \right) $$
$$ eq5: = fpe = = epe\left( {lpe - spe} \right) $$

where

fce :

contractile force (N)

lpe :

contractile and parallel length (m)

spe :

slack length parallel element (m)

epe :

elastic constant parallel element (N/m)

fpe :

parallel element force (N)

lse :

serial length (m)

sse :

slack length serial element (m)

ese :

elastic constant serial element (N/m)

fse :

serial element force (N)

Two other equations can be derived based on the total length of the muscle-tendon unit and the previous model state:

$$ eq6: = len = = lpe + lse $$
$$ eq7: = vce = = \left( {lpe - lastlpe} \right)/timeIncrement $$

where

len :

total length of system (m)

lastlpe :

length of the parallel element at the last time step (m)

timeIncrement :

integration time step of the simulator (s)

For the concentric case the C code can now be generated using the Mathematica command:

$$ CForm\left[ {FullSimplify\left[ {Solve\left[ {\left\{ {eq2,eq3,eq4,eq5,eq6,eq7} \right\},\left\{ {lpe,lse,fpe,fse,fce,vce} \right\}} \right]} \right]} \right] $$

Similarly for the eccentric case:

$$ CForm\left[ {FullSimplify\left[ {Solve\left[ {\left\{ {eq1,eq3,eq4,eq5,eq6,eq7} \right\},\left\{ {lpe,lse,fpe,fse,fce,vce} \right\}} \right]} \right]} \right] $$

These results need to be checked for validity because the solutions are not unique. However, there is a unique solution when range criteria are checked. There are also special cases when springs are slack. If both parallel and serial springs are slack then the model reverts back to the non-spring version. If just the parallel spring is slack then Eq. 5 changes and there are different solutions:

$$ eq5b {:} = fpe = = 0 $$

The concentric case C code is now generated by:

$$ CForm\left[ {FullSimplify\left[ {Solve\left[ {\left\{ {eq2,eq3,eq4,eq5b,eq6,eq7} \right\},\{ lpe,lse,fpe,fse,fce,vce\} } \right]} \right]} \right] $$

The eccentric case C code is now generated by:

$$ CForm\left[ {FullSimplify\left[ {Solve\left[ {\left\{ {eq1,eq3,eq4,eq5b,eq6,eq7} \right\},\{ lpe,lse,fpe,fse,fce,vce\} } \right]} \right]} \right] $$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sellers, W.I., Pataky, T.C., Caravaggi, P. et al. Evolutionary Robotic Approaches in Primate Gait Analysis. Int J Primatol 31, 321–338 (2010). https://doi.org/10.1007/s10764-010-9396-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10764-010-9396-4

Keywords

Navigation