Skip to main content
Log in

Continuously Tunable 250 GHz Gyrotron with a Double Disk Window for DNP-NMR Spectroscopy

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

In this paper, we describe the design and experimental results from the rebuild of a 250 GHz gyrotron used for Dynamic Nuclear Polarization enhanced Nuclear Magnetic Resonance spectroscopy on a 380 MHz spectrometer. Tuning bandwidth of approximately 2 GHz is easily achieved at a fixed magnetic field of 9.24 T and a beam current of 95 mA producing an average output power of >10 W over the entire tuning band. This tube incorporates a double disk output sapphire window in order to maximize the transmission at 250.58 GHz. DNP Signal enhancement of >125 is achieved on a 13C-Urea sample using this gyrotron.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. C. Jaroniec, C. MacPhee, V. Bajaj, M. McMahon, C. Dobson, R. Griffin, Proc. Natl. Acad. Sci. 101 (2004) 711–716.

    Article  Google Scholar 

  2. A. Petkova, Y. Ishii, J. Balbach, O. Antzutkin, R. Leapman, F. Delaglio, R. Tycko, Proc. Natl. Acad. Sci. 99 (2002) 16742.

    Article  Google Scholar 

  3. R. Tycko, Curr. Opin. Struct. Biol. 14 (2004) 96–103.

    Article  Google Scholar 

  4. M. Bayro, T. Maly, N. Birkett, C. MacPhee, C. Dobson, R. Griffin, Biochemistry 49 (2010) 7474–7488.

    Article  Google Scholar 

  5. F. Creuzet, A. McDermott, R. Gebhard, K. van der Hoef, M. Spijker-Assink, J. Herzfeld, J. Lugtenburg, M. Levitt, R. Griffin, Science 251 (1991) 783–786.

    Article  Google Scholar 

  6. Y. Li, D. Berthold, R. Gennis, C. Rienstra, Protein Sci. 17 (2008) 199–204.

    Article  Google Scholar 

  7. A. Nevzorov, S. Park, S. Opella, J. Biomol. NMR 37 (2007) 113–116.

    Article  Google Scholar 

  8. S. Cady, C. Goodman, C. Tatko, W. DeGrado, M. Hong, J. Am. Chem. Soc. 129 (2007) 5719–5729.

    Article  Google Scholar 

  9. S. Cady, M. Hong, Proc. Natl. Acad. Sci. 105 (2008) 1483–1488.

    Article  Google Scholar 

  10. J. Moffat, V. Vijayvergiya, P. Gao, T. Cross, D. Woodbury, D. Busath, J. Biophys. 94 (2008) 434–445.

    Article  Google Scholar 

  11. Z. Song, F. Kovacs, J. Wang, J. Denny, S. Shekar, J. Quine, T. Cross, J. Biophys. 79 (2000) 767–775.

    Article  Google Scholar 

  12. S. Kim, S. Matsuoka, G. Patti, J. Schaefer, Biochemistry 47 (2008) 3822–3831.

    Article  Google Scholar 

  13. A.B. Barnes, G. De Paëpe, P. van der Wel, K. Hu, C. Joo, V. Bajaj, M. Mak-Jurkauskas, J. Sirigiri, J. Herzfeld, and R. Temkin, Applied magnetic resonance 34 (2008) 237–263.

    Article  Google Scholar 

  14. L.R. Becerra, G.J. Gerfen, R.J. Temkin, D.J. Singel, and R.G. Griffin, Phys. Rev. Lett. 71 (1993) 3561–3564.

    Article  Google Scholar 

  15. G. Gerfen, L. Becerra, D. Hall, R. Griffin, R. Temkin, D. Singel, J. Chem. Phys. 102 (1995) 9494–9497.

    Article  Google Scholar 

  16. V.S. Bajaj, C.T. Farrar, M.K. Hornstein, I. Mastovsky, J. Vieregg, J. Bryant, B. Elena, K.E. Kreischer, R.J. Temkin, and R.G. Griffin, J. Magn. Reson., 160 (2003) 85–90.

    Article  Google Scholar 

  17. M. Rosay, V. Weis, K.E. Kreischer, R.J. Temkin, and R.G. Griffin, J. Am. Chem. Soc. Society 124 (2002) 3214–3215.

    Article  Google Scholar 

  18. V. Bajaj, M. Mak-Jurkauskas, M. Belenky, J. Herzfeld, and R. Griffin, Proc. Natl. Acad. Sci. 106 (2009) 9244.

    Article  Google Scholar 

  19. A. B. Barnes, B. Corzilius, M. Mak-Jurkauskas, L. Andreas, V. Bajaj, Y. Matsuki, M. Belenky, J. Lugtenburg, J. Sirigiri, R. Temkin, J. Herzfeld, and R.G. Griffin, Phys. Chem. Chem. Phys. 12 (2010) 5861–5861

    Article  Google Scholar 

  20. M. Rosay, A.C. Zeri, N.S. Astrof, S.J. Opella, J. Herzfeld, and R.G. Griffin, J. Am. Chem. Soc. 123 (2001) 1010–1011.

    Article  Google Scholar 

  21. M.L. Mak-Jurkauskas, V.S. Bajaj, M.K. Hornstein, M. Belenky, R.J. Temkin, R.G. Griffin, and J. Herzfeld, Proceedings of the National Academy of Sciences of the United States of America 105 (2008) 883–888.

    Article  Google Scholar 

  22. Y. Matsuki, K. Ueda, T. Idehara, R. Ikeda, K. Kosuga, I. Ogawa, S. Nakamura, M. Toda, T. Anai, and T. Fujiwara, J. Infrared and Millimeter Waves. 33 (2012) 745–755.

    Article  Google Scholar 

  23. K.E. Kreischer, C. Farrar, R.G. Griffin, R.J. Temkin, and J. Vieregg, Proceedings of the 24th International Conference on Infrared and Millimeter Waves, L. Lombardo, (Ed.), UC Davis, Monterey, CA, 1999, pp. TU-A3.

  24. V.S. Bajaj, M.K. Hornstein, K.E. Kreischer, J.R. Sirigiri, P.P. Woskov, M. Mak, J. Herzfeld, R.J. Temkin, and R.G. Griffin, J. Magn. Reson., 190 (2007) 86–114.

    Google Scholar 

  25. M.K. Hornstein, V.S. Bajaj, R.G. Griffin, K.E. Kreischer, I. Mastovsky, M.A. Shapiro, J.R. Sirigiri, and R.J. Temkin, IEEE Trans. on Electron Devices 52 (2005) 798–807.

    Article  Google Scholar 

  26. S.T. Han, R.G. Griffin, K.N. Hu, C.G. Joo, C.D. Joye, J.R. Sirigiri, R.J. Temkin, A.C. Torrezan, and P.P. Woskov, IEEE Trans. on Plasma Science 35 (2007) 559–564.

    Article  Google Scholar 

  27. A.C. Torrezan, S.T. Han, I. Mastovsky, M.A. Shapiro, J.R. Sirigiri, R.J. Temkin, A.B. Barnes, and R.G. Griffin, IEEE Trans. on Plasma Science, 38 (2010) 1150–1159.

    Article  Google Scholar 

  28. A. C. Torrezan, M. A. Shapiro, J. R. Sirigiri, R. J. Temkin, and R. G. Griffin, IEEE Trans. Electron Devices, vol. 58, no. 8, pp. 2777–2783, Aug. 2011.

  29. E.A. Nanni, A.B. Barnes, R.G. Griffin, and R.J. Temkin, IEEE Trans. on Terahertz Science and Technology, 1 (2011) 145–163.

    Article  Google Scholar 

  30. Toshitaka Idehara, Kosuke Kosuga, La Agusu, Ryosuke Ikeda, Isamu Ogawa, et al., Journal of Infrared, Millimeter and Terahertz Waves, Volume 31, Number 7, Pages 775–790, 2010.

    Article  Google Scholar 

  31. V. Denysenkov, M. J. Prandolini, M. Gafurov, D. Sezer, B. Endeward, and T. F. Prisner, Physical Chem. Chemical Phys., vol. 12, no. 22, pp. 5786–5790, 2010.

    Google Scholar 

  32. U. Akbey, W. T. Franks, A. Linden, S. Lange, R. G. Griffin, B.-J. van Rossum, and H. Oschkinat, Ang. Chem. Int. vol. 49, no. 42, pp. 7803–7806, 2010.

    Article  Google Scholar 

  33. Y. Matsuki, H. Takahashi, K. Ueda, T. Idehara, I. Ogawa, M. Toda, H. Akutsu, and T. Fujiwara, Physical Chem. Chemical Phys., vol. 12, no. 22, pp. 5799–5803, 2010.

    Google Scholar 

  34. M. Rosay, L. Tometich, S. Pawsey, R. Bader, R. Schauwecker, M. Blank, P. M. Borchard, S. R. Cauffman, K. L. Felch, R. T. Weber, R. J. Temkin, R. G. Griffin, and W. E. Maas, Physical Chem. Chemical Phys., vol. 12, no. 22, pp. 5850–5860, 2010.

    Google Scholar 

  35. V. Vitzthum, M. A. Caporini, and G. Bodenhausen, J. Magn. Reson., vol. 205, no. 1, pp. 177–179, 2010.

    Google Scholar 

  36. A. B. Barnes, E. Markhasin, E. Daviso, V. K. Michaelis, E. Mena, R. DeRocher, A. Thakkar, E. A. Nanni, S. Jawla, P Woskov, J. Herzfeld, R. J. Temkin, R. G. Griffin, J. Magn. Reson. (2012), vol. 224, pp. 1–7.

    Article  Google Scholar 

  37. A. B. Barnes, E. A. Nanni, J. Herzfeld, R. G. Griffin, R. J. Temkin, J. Magn. Reson. (2012), vol. 221, pp. 147–153.

    Google Scholar 

  38. A. W. Fliflet and M. E. Read, Int. J. Electron., vol. 51, no. 4, pp. 475–484, 1981.

    Article  Google Scholar 

  39. M. Botton, T.M. Antonsen Jr, B. Levush, K.T. Nguyen, and A.N. Vlasov, IEEE Trans. on Plasma Science, 26 (1998) 882–892.

    Article  Google Scholar 

  40. S. N. Vlasov, L. I. Zagryadskaya, and M. I. Petelin, Radio Eng. Electron. Phys., vol. 12, no. 10, pp. 14–17, 1975.

    Google Scholar 

  41. K. Felch, M. Blank, P. Borchard, T. S. Chu ; J. Feinstein, H. R. Jory, J. A. Lorbeck, C. M. Loring, Y. M. Mizuhara, J. M. Neilson, R. Schumacher, R. J. Temkin, IEEE Trans. on Plasma Science, Vol. 24 , pp. 558 – 569 (1996).

    Article  Google Scholar 

  42. P.W. Woskov, V.S. Bajaj, M.K. Hornstein, R.J. Temkin, and R.G. Griffin, IEEE Trans. on Microwave Theory and Techniques, 53 (2005) 1863–69.

    Article  Google Scholar 

  43. E.A. Nanni, A.B. Barnes, Y. Matsuki, P.P. Woskov, B. Corzilius, R.G. Griffin, and R.J. Temkin, J. Magn. Reson. 210 (2011) 16–23.

    Article  Google Scholar 

  44. E.A. Nanni, S.K. Jawla, M. A. Shapiro, P.P. Woskov, and R.J. Temkin, J. Infrared and Millimeter Waves. 33 (2012) 695–714.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Institutes of Health through grants EB002804, EB003151, EB002026, EB001960, EB001035, EB001965, and EB004866. We also thank Ivan Mastovsky for helping during the fabrication and assembling of the components.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudheer Jawla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jawla, S., Ni, Q.Z., Barnes, A. et al. Continuously Tunable 250 GHz Gyrotron with a Double Disk Window for DNP-NMR Spectroscopy. J Infrared Milli Terahz Waves 34, 42–52 (2013). https://doi.org/10.1007/s10762-012-9947-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-012-9947-1

Keywords

Navigation