Skip to main content
Log in

THz Properties of Nematic Liquid Crystals

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

We systematically study the terahertz (THz) properties of a set of nematic liquid crystals. We use THz time domain spectroscopy to obtain data between 0.2 THz up to 2.5 THz. Such a broadband set of terahertz data has not yet been reported. From the measured data, we extract macroscopic data, such as the birefringence, the refractive indices and the absorption coefficients for ordinary and extraordinary polarization. The impact of different side chains and core structures on the terahertz anisotropy are discussed. This paper will serve as a data base and can be very useful for the design of new terahertz liquid crystal material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. C. J. E. Straatsma, M. A. Startsev and A. Y. Elezzabi, J Infrared Milli Terahz Waves (2010) doi:10.1007/s10762-010-9623-2

    Google Scholar 

  2. G. Torosyan, C. Rau, B. Pradarutti, and R. Beigang, Appl. Phys. Lett. 85, 3372 (2004)

    Article  Google Scholar 

  3. C. S. Ponseca Jr., O. Kambara, S. Kawaguchi, K. Yamamoto and K. Tominaga, J Infrared Milli Terahz Waves (2010) doi:10.1007/s10762-010-9636-x

    Google Scholar 

  4. B. Born and M. Havenith, J Infrared Milli Terahz Waves 30, 1245 (2009)

    Google Scholar 

  5. C. a. Weg, W. v. Spiegel, R. Henneberger, R. Zimmermann, T. Loeffler, and H. G. Roskos, J Infrared Milli Terahz Waves 30 1281 (2009)

    Google Scholar 

  6. H. B. Liu, Y. Chen, G. J. Bastiaans, X. C. Zhang, Opt. Express 14, 415 (2006)

    Article  Google Scholar 

  7. N. Krumbholz, C. Jansen, M. Scheller, T. Müller-Wirts, S. Lübbecke, R. Holzwarth, R. Scheunemann, B. Sartorius, H. Roehle, D. Stanze, J. Beckmann, L. von Chrzanowski, U. Ewert, and M. Koch, Proc. of SPIE “Security & Defense”, Berlin (2009)

  8. N. Krumbholz, T. Hochrein, N. Vieweg, T. Hasek, K. Kretschmer, M. Bastian, M. Mikulics, and M. Koch, Polym. Test. 28, 30 (2009)

    Article  Google Scholar 

  9. T. Nagatsuma, IEEE 31th Intl. Conf.on IRMMW and 14th Intl. Conf. on Terahertz Electronics, China, September (2006)

  10. R. Piesiewicz, C. Jansen, S. Wietzke, D. Mittleman, M. Koch, and T. Kürner, J Infrared Milli Terahz Waves 28, 363 (2007)

    Google Scholar 

  11. D. Turchinovich, A. Kammoun, P. Knobloch, T. Dobbertin, and M. Koch, Appl. Phys. A 74, 219 (2002)

    Article  Google Scholar 

  12. W. Withayachumnankul, B. M. Fischer, and D. Abbott, Opt. Comm. 281, 2374 (2008)

    Article  Google Scholar 

  13. H. Nemec, P. Kuzel, F. Garet, and L. Duvillaret, Appl. Opt. 43, 1965 (2004)

    Article  Google Scholar 

  14. R. Kersting, G. Strasser, and K. Unterrainer, Electron. Lett. 36, 1156 (2000)

    Article  Google Scholar 

  15. T. Kleine-Ostmann, P. Dawson, K. Pierz, G. Hein, M. Koch, Appl. Phys. Lett. 84, 3555 (2004)

    Article  Google Scholar 

  16. T. Kleine-Ostmann, K. Pierz, G. Hein, P. Dawson, and M. Koch, Electron. Lett. 40, 124 (2004)

    Article  Google Scholar 

  17. D. Mittleman, Nature 444, 560 (2006)

    Article  Google Scholar 

  18. M. Tanaka and S. Sato, IEEE Microwave and Wireless Components Lett. 12, 163 (2002)

    Article  Google Scholar 

  19. H. Fujikake, T. Kuki, H. Kamoda, F. Sato, and T. Nomoto, Appl. Phys. Lett. 83, 1815 (2003)

    Article  Google Scholar 

  20. F. Yang and J. R. Sambles, Appl. Phys. Lett. 85, 2041 (2004)

    Article  Google Scholar 

  21. T.R. Tsai, C. Y. Chen, R. P. Pan, C. L. Pan, X. C. Zhang, IEEE Microwave and Wireless Compon. Lett. 14, 77 (2004)

    Article  Google Scholar 

  22. M. Y. Ismail, W. Hu, R. Cahill, V. F. Fusco, H. S. Gamble, D. Linton, R. Dickie, S. P. Rea, and N. Grant, IET Microw. Antennas Propag. 1, 809 (2007)

    Article  Google Scholar 

  23. W. Hu, R. Dickie, R. Cahill, H. Gamble, Y. Ismail, V. Fusco, D. Linton, N. Grant, and S. Rea, IEEE Microwave and Wireless Compon. Lett. 17, 667 (2007)

    Article  Google Scholar 

  24. Z. Ghattan, T. Hasek, R. Wilk, M. Shahabadi, and M. Koch, Opt. Commun. 281, 4623 (2008)

    Article  Google Scholar 

  25. R. Wilk, N. Vieweg, O. Kopschinski, and M. Koch, Opt. Express 17, 7377 (2009)

    Article  Google Scholar 

  26. D. Turchinovich, P. Knobloch, G. Luessem, and M. Koch, Proc. of SPIE meeting on Liquid Cryst.V, San Diego, CA, SPIE Vol. 4463, 65 (2001)

  27. R. P. Pan, T. R. Tsai, C. Y. Chen, C. L. Pan, J. Biol. Phys. 29, 335 (2003)

    Article  Google Scholar 

  28. T. R. Tsai, C. Y. Chen, C. L. Pan, R. P. Pan, and X. C. Zhang, Applied Optics 42, 2372 (2003)

    Article  Google Scholar 

  29. R. P. Pan, T. R. Tsai, C. Y. Chen, C. H. Wang, C. L. Pan, Mol. Cryst. Liq. Cryst. 409, 137 (2004)

    Article  Google Scholar 

  30. R. P. Pan, C. Y. Chen, C. F. Hsieh, and C. L. Pan, Proc. of 21th International Liquid Crystal Conference, Keystone, Colorado, USA (2006)

  31. C. L. Pan, R. P. Pan, Proc. of SPIE 6135, 61350D-1, Liquid Crystal Materials, Devices and Applications XI San Jose, CA, USA (2006)

  32. R. P. Pan, C. F. Hsieh, C. L. Pan, and C. Y. Chen, J. Appl. Phys. 103, 093523 (2008)

    Article  Google Scholar 

  33. V. V. Meriakri, C. L. Pan, R. P. Pan, M. P. Parkhomenko, E. E. Chigrai, Proc. of CAOL, Ukraine (2008)

  34. V. V. Meriakri, E. E. Chigrai C. L. Pan, R. P. Pan, and M. P. Parkhomenko, Proc. of IRMMW Busan, Korea (2009)

  35. Y. Takanishi, K. Ishikawa, J. Watanabe, H. Takezoe, M. Yamashita, and K. Kawase, Phys. Rev. E 71, 061701 (2005)

    Article  Google Scholar 

  36. J. I. Nishizawa, T. Yamada, T. Sasaki, T. Tanabe, T. Wadayama, T. Tanno, K. Suto, Appl. Surf. Sci. 252, 4227 (2006)

    Article  Google Scholar 

  37. F. Rutz, T. Hasek, M. Koch, H. Richter, and U. Ewert, Appl. Phys. Lett. 89, 221911 (2006)

    Article  Google Scholar 

  38. N. Vieweg, C. Jansen, M. K. Shakfa, M. Scheller, N. Krumbholz, R. Wilk, M. Mikulics, and M. Koch, Opt. Express 18, 6097 (2010)

    Article  Google Scholar 

  39. L. Duvillaret, F. Garet, J. Coutaz, Appl. Opt. 38, 409 (1999)

    Article  Google Scholar 

  40. R. Wilk, I. Pupeza, R. Cernat, and M. Koch, IEEE Journal Select. Topics Quant. Electronics 14, 392 (2008)

    Article  Google Scholar 

  41. M. Scheller, C. Jansen, and M. Koch, Opt. Commun. 282, 1304 (2009)

    Article  Google Scholar 

  42. V. Vill, Liquid Crystal Database 4.6, LCI Publisher (2005), https://liqcryst.chemie.uni-hamburg.de

  43. M. M. M. Abdoh, Srinivasa, N. C. Shivaprakash, and J. Shashidhara Prasad, J. Chem. Phys. 77, 2570 (1982)

    Article  Google Scholar 

  44. A. V. N. Gupta, J. V. Rao, P. Venkatacharyulu, Cryst. Res. Technol. 22, 1313 (1987)

    Article  Google Scholar 

  45. N. Vieweg, M. Mikulics, M. Scheller, K. Ezdi, R. Wilk, H.-W. Hübers, and M. Koch, Opt. Express 16, 19695 (2008)

    Article  Google Scholar 

  46. D. Grischkowsky, S. Keiding, M. v. Exter and C. Fattinger, J. Opt. Soc. Am. B 7, 2006 (1990)

    Article  Google Scholar 

  47. P. U. Jepsen, R. H. Jacobsen, and S. R. Keiding, J. Opt. Soc. Am. B 13, 2424 (1996)

    Article  Google Scholar 

  48. R. Eidenschink, D. Erdmann, J. Krause, and L. Pohl, Angew. Chem. 89, 103 (1977)

    Article  Google Scholar 

  49. L. Pohl, R. Eidenschink, G. Krause, and D. Erdmann, Phys. Lett. 60A, 421 (1977)

    Google Scholar 

  50. U. Finkenzeller, T. Geelhaar, G. Weber, L. Pohl, Liq. Cryst. 5, 313 (1989)

    Article  Google Scholar 

  51. J. Shashidhara Prasad, M. M. M. Abdoh, C. I. Venkataramana Shastry, N. C. Shivaprakash, Mol. Cryst. Liq. Cryst. 104, 141 (1984)

    Article  Google Scholar 

  52. G. W. Gray, K. J. Harrison, J. A. Nash, Electron. Lett. 9, 130 (1973)

    Article  Google Scholar 

  53. S. T. Wu, E. Ramos, U. Finkenzeller, J. Appl. Phys. 68, 78 (1990)

    Article  Google Scholar 

  54. M. Evans, M. Davis, and I. Larkin, J. C. S. Faraday II 69, 1011 (1973)

    Article  Google Scholar 

Download references

Acknowledgement

The authors acknowledge the Merck KGaA for providing the samples. Nico Vieweg thanks the Studienstiftung des deutschen Volkes and the Braunschweig International School of Metrology (IGSM) for funding. Mohammad Khaled Shakfa acknowledges the Syrian Ministry of Higher Education for financial support. Benedikt Scherger would like to express his appreciation to the Friedrich Ebert Stiftung.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nico Vieweg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vieweg, N., Shakfa, M.K., Scherger, B. et al. THz Properties of Nematic Liquid Crystals. J Infrared Milli Terahz Waves 31, 1312–1320 (2010). https://doi.org/10.1007/s10762-010-9721-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-010-9721-1

Keywords

Navigation