Skip to main content
Log in

Digital Physical Activity Data Collection and Use by Endurance Runners and Distance Cyclists

  • Published:
Technology, Knowledge and Learning Aims and scope Submit manuscript

Abstract

The introduction of sensor technologies to sports has allowed athletes to quantify and track their performance, adding an information-based layer to athletic practices. This information layer is particularly prevalent in practices involving formal competition and high levels of physical endurance, such as biking and running. We interviewed 20 athletes who participated in distance cycling or endurance running and also had experience using these technologies. This paper presents two cases and a number of shorter descriptive examples from these interviews that illustrate the factors salient to the introduction of these athletes to their respective sports, their continued participation in running or cycling, and their use of physical activity data. The effects of these data and logging practices among these individuals are examined, including some of the tensions that these athletes have with respect to quantifications of their performance and how they see themselves as athletic individuals in light of the increased presence of digital data. Educational implications are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. All interviewee and other proper names are pseudonyms.

  2. All emphases are added by the authors and have been made to highlight key phrases that supported our analyses.

References

  • Azevedo, F. (2011). Lines of practice: A practice-centered theory of interest relationships. Cognition and Instruction, 29(2), 147–184.

    Article  Google Scholar 

  • Berland, L. K., & Lee, V. R. (2012). In pursuit of consensus: Disagreement and legitimization during small group argumentation. International Journal of Science Education, 34(12), 1857–1882. doi:10.1080/09500693.2011.645086.

    Article  Google Scholar 

  • Borg, G. (1998). Borg’s perceived exertion and pain scales. Champaign, IL: Human Kinetics.

    Google Scholar 

  • Brown, J. S., & Duguid, P. (1991). Organizational learning and communities-of-practice: Toward a unified view of working, learning, and innovation. Organization Science, 2(1), 40–57.

    Article  Google Scholar 

  • Ching, C. C., & Foley, B. J. (Eds.). (2012). Constructing the self in a digital world. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Edelson, D. C., Gordin, D. N., & Pea, R. D. (1999). Addressing the challenges of inquiry-based learning through technology and curriculum design. Journal of the Learning Sciences, 8(3/4), 391–450.

    Google Scholar 

  • Edelson, D. C., & Reiser, B. J. (2006). Making authentic practices accessible to learners: Design challenges and strategies. In R. K. Sawyer (Ed.), The Cambridge handbook of the learning sciences (pp. 335–354). New York: Cambridge University Press.

    Google Scholar 

  • Fields, D. A., & Kafai, Y. B. (2012). Navigating life as an avatar: The shifting identities-in-practice of a girl player in a tween virtual world. In C. C. Ching & B. J. Foley (Eds.), Constructing the self in a digital world (pp. 222–250). Cambridge, UK: Cambridge University Press.

  • Gainsburg, J. (2006). The mathematical modeling of structural engineers. Mathematical Thinking and Learning, 8(1), 3–36.

    Article  Google Scholar 

  • Gee, J. P. (2005). Semiotic social spaces and affinity spaces: From The Age of Mythology to today’s schools. In D. Barton & K. Tusting (Eds.), Beyond communities of practice: Language, power and social context (pp. 214–232). Cambridge: Cambridge University Press.

  • Gee, J. P. (2008). Social linguistics and literacies: Ideology in discourses. New York: Taylor & Francis.

  • Hall, R., Stevens, R., & Torralba, T. (2002). Disrupting representational infrastructure in conversations across disciplines. Mind, Culture, and Activity, 9(3), 179–210.

    Article  Google Scholar 

  • Halverson, E. R., & Halverson, R. (2008). Fantasy baseball: The case for competitive fandom. Games and Culture, 3(3–4), 286–308.

    Article  Google Scholar 

  • Kafai, Y. B., Fields, D. A., & Cook, M. S. (2010). Your second selves: Avatar designs and identity play. Games and Culture, 5(1), 23–42.

    Article  Google Scholar 

  • Kanter, D., Sherin, B., & Lee, V. (2006). Changing conceptual ecologies in task-structured science curricula. In S. A. Barab, K. E. Hay, & D. T. Hickey (Eds.), Proceedings of the seventh international conference of the learning sciences (Vol. 1, pp. 293–299). Mahwah, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Lam, W. S. E. (2000). L2 literacy and the design of the self: A case study of a teenager writing on the internet. TESOL Quarterly, 34(3), 457–483.

    Article  Google Scholar 

  • Lave, J., & Wenger, E. (1991). Situated learning: Legitimate peripheral participation. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Lee, V. R. (2013). Knowing and learning with technology (and on wheels!): An introduction to the special issue. Technology, Knowledge and Learning. doi:10.1007/s10758-013-9204-2.

  • Lee, V. R., & Drake, J. (2012). Physical activity data use by technoathletes: Examples of collection, inscription, and identification. In J. van Aalst, K. Thompson, M. J. Jacobson, & P. Reimann (Eds.), The future of learning: Proceedings of the 10th international conference of the learning sciences (ICLS 2012) (Vol. 2, pp. 321–325). Sydney, NSW: International Society of the Learning Sciences.

    Google Scholar 

  • Lee, V. R., & DuMont, M. (2010). An exploration into how physical activity data-recording devices could be used in computer-supported data investigations. International Journal of Computers for Mathematical Learning, 15(3), 167–189. doi:10.1007/s10758-010-9172-8.

    Article  Google Scholar 

  • Lee, V. R., & Thomas, J. M. (2011). Integrating physical activity data technologies into elementary school classrooms. Educational Technology Research and Development, 59(6), 865–884. doi:10.1007/s11423-011-9210-9.

    Article  Google Scholar 

  • Leontiev, A. N. (1978). Activity, consciousness, and personality. Englewood Cliffs, NJ: Prentice-Hall.

    Google Scholar 

  • McDougall, C. (2009). Born to run: A hidden tribe, superathletes, and the greatest race the world has never seen. New York: Alfred A. Knopf.

    Google Scholar 

  • Nasir, N. S., & Hand, V. (2008). From the court to the classroom: Opportunities for engagement, learning, and identity in basketball and classroom mathematics. Journal of the Learning Sciences, 17(2), 143–179. doi:10.1080/10508400801986108.

    Article  Google Scholar 

  • Noss, R., Pozzi, S., & Hoyles, C. (1999). Touching epistemologies: Meanings of average and variation in nursing practice. Educational Studies in Mathematics, 40(1), 25–51.

    Article  Google Scholar 

  • Papert, S. (1996). An exploration in the space of mathematics educations. International Journal of Computers for Mathematical Learning, 1(1), 95–123.

    Google Scholar 

  • Peppler, K. A., & Kafai, Y. B. (2007). From SuperGoo to scratch: Exploring creative digital media production in informal learning. Learning, Media and Technology, 32(2), 149–166. doi:10.1080/17439880701343337.

    Article  Google Scholar 

  • Reeve, S., & Bell, P. (2009). Children’s self documentation and understanding of the concepts ‘healthy’ and ‘unhealthy’. International Journal of Science Education, 31(14), 1953–1974.

    Article  Google Scholar 

  • Resnick, M., Maloney, J., Monroy-Hernandez, A., Rusk, N., Eastmond, E., Brennan, K., et al. (2009). Scratch: Programming for all. Communications of the ACM, 52(11), 60–67. doi:10.1145/1592761.1592779.

    Article  Google Scholar 

  • Rivera-Pelayo, V., Zacharias, V., Müller, L., & Braun, S. (2012). Applying quantified self approaches to support reflective learning. In S. Dawson & C. Hathornwaite (Eds.), LAK ‘12 Proceedings of the 2nd international conference on learning analytics and knowledge (pp. 111–114). New York, NY: ACM.

    Chapter  Google Scholar 

  • Rogoff, B. (2003). The cultural nature of human development. New York: Oxford University Press.

  • Roth, W. M., & McGinn, M. K. (1998). Inscriptions: Toward a theory of representing as social practice. Review of Educational Research, 68(1), 35–59.

    Article  Google Scholar 

  • Sherin, B. (2001). A comparison of programming and algebraic notation as expressive languages for physics. International Journal of Computers for Mathematical Learning, 6, 1–61.

    Article  Google Scholar 

  • Smith, B. K., Frost, J., Albayrak, M., & Sudhakar, R. (2006). Facilitating narrative medical discussions of type 1 diabetes with computer visualizations and photography. Patient Education and Counseling, 64, 313–321.

    Article  Google Scholar 

  • Stefani, R. (2012). Olympic swimming gold: The suit or the swimmer in the suit? Significance, 9(2), 13–17.

    Article  Google Scholar 

  • Turkle, S. (1984). The second self: Computers and the human spirit. New York, NY: Simon & Schuster.

    Google Scholar 

  • Turkle, S. (1997). Life on the screen: Identity in the age of internet. New York, NY: Simon & Schuster.

    Google Scholar 

  • Turkle, S. (2011). Alone together: Why we expect more from technology and less from each other. New York, NY: Basic Books.

    Google Scholar 

  • Vygotsky, L. S. (1978). Mind in society. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Wenger, E. (1998). Communities of practice: Learning, meaning, and identity. New York: Cambridge University Press.

    Google Scholar 

  • Wilensky, U., & Resnick, M. (1999). Thinking in levels: A dynamic systems approach to making sense of the world. Journal of Science Education and Technology, 8(1), 3–19.

    Article  Google Scholar 

  • Wilson, D. G. (2004). Bicycling science (3rd ed.). Cambridge, MA: The MIT Press.

    Google Scholar 

  • Wu, H., & Kracjik, J. S. (2006). Inscription practices in two inquiry-based classrooms: A case study of seventh graders’ use of data tables and graphs. Journal of Research in Science Teaching, 43(1), 63–95.

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by NSF grant DRL-1054280. The opinions in this paper are those of the authors and not necessarily of the US National Science Foundation. Sincere thanks go to the members of the VITAL Collaborative at Utah State University who assisted in data collection, the participants who shared their experiences, Utah businesses that assisted in participant recruitment, and three anonymous reviewers who provided a number of comments that helped us to improve this article. Thanks also to Bruce Sherin for helpful feedback on earlier versions of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor R. Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, V.R., Drake, J. Digital Physical Activity Data Collection and Use by Endurance Runners and Distance Cyclists. Tech Know Learn 18, 39–63 (2013). https://doi.org/10.1007/s10758-013-9203-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10758-013-9203-3

Keywords

Navigation