Skip to main content

Advertisement

Log in

Inflammatory Mediators as Biomarkers in Brain Disorders

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Neurodegenerative diseases such as Alzheimer, Parkinson, amyotrophic lateral sclerosis, and Huntington are incurable and debilitating conditions that result in progressive death of the neurons. The definite diagnosis of a neurodegenerative disorder is disadvantaged by the difficulty in obtaining biopsies and thereby to validate the clinical diagnosis with pathological results. Biomarkers are valuable indicators for detecting different phases of a disease such as prevention, early onset, treatment, progression, and monitoring the effect of pharmacological responses to a therapeutic intervention. Inflammation occurs in neurodegenerative diseases, and identification and validation of molecules involved in this process could be a strategy for finding new biomarkers. The ideal inflammatory biomarker needs to be easily measurable, must be reproducible, not subject to wide variation in the population, and unaffected by external factors. Our review summarizes the most important inflammation biomarkers currently available, whose specificity could be utilized for identifying and monitoring distinctive phases of different neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Glass, C.K., K. Saijo, B. Winner, M.C. Marchetto, and F.H. Gage. 2010. Mechanisms underlying inflammation in neurodegeneration. Cell 140(6): 918–934.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Amor, S., F. Puentes, D. Baker, and P. van der Valk. 2010. Inflammation in neurodegenerative disease. Immunology 129: 154–169.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Zhang, Y.Y., Y.C. Fan, M. Wang, D. Wang, and X.H. Li. 2013. Atorvastatin attenuates the production of IL-1β, IL-6, and TNF-α in the hippocampus of an amyloid β1-42-induced rat model of Alzheimer’s disease. Clinical Interventions in Aging 8: 103–110.

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Nolan, Y.M., Sullivan, A.M., Toulouse, A. (2013) Parkinson’s disease in the nuclear age of neuroinflammation. Trends in Molecular Medicine, 19, 187–196.

    Google Scholar 

  5. Hsiao, H.Y., Chen, Y.C., Chen, H.M., Tu, P.H., Chern, Y. (2013) A critical role of astrocyte-mediated nuclear factor-κB-dependent inflammation in Huntington’s disease. Human Molecular Genetics, 22, 1826–1842.

    Google Scholar 

  6. Wyss-Coray, T. 2006. Inflammation in Alzheimer disease: driving force bystander or beneficial response? Nature Medicine 12: 1005–1015.

    CAS  PubMed  Google Scholar 

  7. Singh, S., A.S. Kushwah, R. Singh, M. Farswan, and R. Kaur. 2012. Current therapeutic strategy in Alzheimer’s disease. European Review for Medical and Pharmacological Sciences 16(12): 1651–1664.

    CAS  PubMed  Google Scholar 

  8. Aluise, C.D., R.A. Sowell, and D.A. Butterfield. 2008. Peptides and proteins in plasma and cerebro spinal fluid as biomarkers for the prediction, diagnosis, and monitoring of therapeutic efficacy of Alzheimer’s disease. Biochimica et Biophysica Acta 1782(10): 549–558.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Reitz, C., C. Brayne, and R. Mayeux. 2011. Epidemiology of Alzheimer disease. Nature Reviews Neurology 7(3): 137–152.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Hebert, L.E., Weuve, J., Scherr, P.A., Evans, D.A. (2013) Alzheimer disease in the United States (2010–2050) estimated using the 2010 census. Neurology, 80, 1778–1783.

    Google Scholar 

  11. Guerreiro, R.J., D.R. Gustafson, and J. Hardy. 2012. The genetic architecture of Alzheimer’s disease: beyond APP, PSENs and APOE. Neurobiology of Aging 33(3): 437–456.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. McKhann, G.M., D.S. Knopman, H. Chertkow, B.T. Hyman, C.R. Jack Jr., C.H. Kawas, W.E. Klunk, W.J. Koroshetz, J.J. Manly, R. Mayeux, R.C. Mohs, J.C. Morris, M.N. Rossor, P. Scheltens, M.C. Carrillo, B. Thies, S. Weintraub, and C.H. Phelps. 2011. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers & Dementia 7(3): 263–269.

    Article  Google Scholar 

  13. Wyss-Coray, T., and J. Rogers. 2012. Inflammation in Alzheimer disease—a brief review of the basic science and clinical literature. Cold Spring Harbor Perspectives in Medicine 2(1): a006346.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Balistreri, C.R., G. Colonna-Romano, D. Lio, G. Candore, and C. Caruso. 2009. TLR4 polymorphisms and ageing: implications for the pathophysiology of age-related diseases. Journal of Clinical Immunology 29(4): 406–415.

    Article  CAS  PubMed  Google Scholar 

  15. Mrak, R.E., and W.S.T. Griffin. 2005. Potential inflammatory biomarkers in Alzheimer’s disease. Journal of Alzheimer’s Disease 8(4): 369–375.

    CAS  PubMed  Google Scholar 

  16. Harigaya, Y., M. Shoji, T. Nakamura, E. Matsubara, K. Hosoda, and S. Hirai. 1995. Alpha 1-antichymotrypsin level in cerebrospinal fluid is closely associated with late onset Alzheimer’s disease. Internal Medicine 34(6): 481–484.

    Article  CAS  PubMed  Google Scholar 

  17. Pirttila, T., P.D. Mehta, H. Frey, and H.M. Wisniewski. 1994. α1Antichymotrypsin and IL-1β are not increased in CSF or serum in Alzheimer’s disease. Neurobiology of Aging 15(3): 313–317.

    Article  CAS  PubMed  Google Scholar 

  18. Peskind, E.R., W.S. Griffin, K.T. Akama, M.A. Raskind, and L.J. Van Eldik. 2001. Cerebrospinal fluid s100B is elevated in the earlier stages of Alzheimer’s disease. Neurochemistry International 39: 409–413.

    Article  CAS  PubMed  Google Scholar 

  19. Petzold, A., R. Jenkins, H.C. Watt, A.J. Green, E.J. Thompson, G. Keir, N.C. Fox, and M.N. Rossor. 2003. Cerebrospinal fluid s100B correlates with brain atrophy in Alzheimer’s disease. Neuroscience Letters 336: 167–170.

    Article  CAS  PubMed  Google Scholar 

  20. Xia, M., S. Qin, M. McNamara, C. Mackay, and B.T. Hyman. 1997. Interleukin-8 receptor B immunoreactivity in brain and neuritic plaques of Alzheimer’s disease. American Journal of Pathology 150(4): 1267–1274.

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Zhang, J., I. Sokal, E.R. Peskind, J.F. Quinn, J. Jankovic, C. Kenney, K.A. Chung, S.P. Millard, J.G. Nutt, and T.J. Montine. 2008. CSF multianalyte profile distinguishes Alzheimer and Parkinson diseases. American Journal of Clinical Pathology 129(4): 526–529.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Zuliani, G., G. Guerra, M. Ranzini, L. Rossi, M.R. Munari, A. Zurlo, A. Blè, S. Volpato, A.R. Atti, and R. Fellin. 2007. High interleukin-6 plasma levels are associated with functional impairment in older patients with vascular dementia. International Journal of Geriatric Psychiatry 22(4): 305–331.

    Article  CAS  PubMed  Google Scholar 

  23. Luterman, J.D., V. Haroutunian, S. Yemul, et al. 2000. Cytokine gene expression as a function of the clinical progression of Alzheimer disease dementia. Archives of Neurology 57(8): 1153–1160.

    Article  CAS  PubMed  Google Scholar 

  24. Zhang, J., D. Goodlett, J. Quinn, et al. 2005. Quantitative proteomics of cerebrospinal fluid from patients with Alzheimer’s disease. Journal of Alzheimers Disease 7: 125–133.

    CAS  Google Scholar 

  25. Hu, Y., A. Hosseini, J. Kauwe, et al. 2007. Identification and validation of novel CSF biomarkers for early stages of Alzheimer’s disease. Proteomics Clinical Applications 1: 1373–1384.

    Article  CAS  PubMed  Google Scholar 

  26. Castano, E., A. Roher, C. Esh, T. Kokjohn, and T. Beach. 2006. Comparative proteomics of cerebrospinal fluid in neuropathologically-confirmed Alzheimer’s disease and non-demented elderly subjects. Neurological Research 28: 155–163.

    Article  CAS  PubMed  Google Scholar 

  27. Lewczuk, P., and J. Wiltfang. 2008. Neurochemical dementia diagnostics: state of the art and research perspectives. Proteomics 8: 1292–1301.

    Article  CAS  PubMed  Google Scholar 

  28. Ray, S., M. Britschgi, C. Herbert, Y. Takeda-Uchimura, A. Boxer, K. Blennow, L.F. Friedman, D.R. Galasko, M. Jutel, A. Karydas, et al. 2007. Classification and prediction of clinical Alzheimer’s diagnosis based on plasma signaling proteins. Nature Medicine 13: 1359–1362.

    Article  CAS  PubMed  Google Scholar 

  29. Doecke, J.D., S.M. Laws, N.G. Faux, W. Wilson, S.C. Burnham, C.P. Lam, A. Mondal, J. Bedo, A.I. Bush, B. Brown, K. De Ruyck, K.A. Ellis, C. Fowler, V.B. Gupta, R. Head, S.L. Macaulay, K. Pertile, C.C. Rowe, A. Rembach, M. Rodrigues, R. Rumble, C. Szoeke, K. Taddei, T. Taddei, B. Trounson, D. Ames, C.L. Masters, and R.N. Martins. 2012. Blood-based protein biomarkers for diagnosis of Alzheimer disease. Archives of Neurology 69(10): 1318–1325.

    Article  PubMed  Google Scholar 

  30. Soares, D.H., et al. 2012. Plasma biomarkers associated with the apolipoprotein E genotype and Alzheimer disease. Archives of Neurology 69: 1310–1317.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Henkel, A.W., K. Muller, P. Lewczuk, T. Muller, K. Marcus, J. Kornhuber, and J. Wiltfang. 2012. Multidimensional plasma protein separation technique for identification of potential Alzheimer’s disease plasma biomarkers: a pilot study. Journal of Neural Transmission 119: 779–788.

    Article  CAS  PubMed  Google Scholar 

  32. Crosiers, D., J. Theuns, P. Cras, and C. Van Broeckhoven. 2011. Parkinson disease: insights in clinical, genetic and pathological features of monogenic disease subtypes. Journal of Chemical Neuroanatomy 42(2): 131–141.

    Article  CAS  PubMed  Google Scholar 

  33. Reichmann, H. 2011. View point: etiology in Parkinson’s disease. Dual hit or spreading intoxication. Journal of the Neurological Sciences 310(1–2): 9–11.

    Article  PubMed  Google Scholar 

  34. Lesage, S., and A. Brice. 2012. Role of Mendelian genes in “sporadic” Parkinson’s disease. Parkinsonism & Related Disorders 18(supplement 1): S66–S70.

    Article  Google Scholar 

  35. Taccioli, C., Maselli, V., Tegn’er, J., et al. (2011) ParkDB: a Parkinson’s disease gene expression database. Database, vol. 2011, article bar007.

  36. Crosiers, D., J. Theuns, P. Cras, and C. Van Broeckhoven. 2011. Parkinson disease: insights in clinical, genetic and pathological features of monogenic disease subtypes. Journal of Chemical Neuroanatomy 42(2): 131–141.

    Article  CAS  PubMed  Google Scholar 

  37. Dunning, C.J., J.F. Reyes, J.A. Steiner, and P. Brundin. 2012. Can Parkinson’s disease pathology be propagated from one neuron to another? Progress in Neurobiology 97(2): 205–219.

    Article  CAS  PubMed  Google Scholar 

  38. Shulman, J.M., P.L. De Jager, and M.B. Feany. 2011. Parkinson’s disease: genetics and pathogenesis. Annual Review of Pathology 6: 193–222.

    Article  CAS  PubMed  Google Scholar 

  39. Obeso, J.A., M.C. Rodriguez-Oroz, C.G. Goetz, et al. 2010. Missing pieces in the Parkinson’s disease puzzle. Nature Medicine 16(6): 653–661.

    Article  CAS  PubMed  Google Scholar 

  40. Hirsch, E.C., and S. Hunot. 2009. Neuroinflammation in Parkinson’s disease: a target for neuroprotection? Lancet Neurology 8: 382–397.

    Article  CAS  PubMed  Google Scholar 

  41. Zhang, W., T. Wang, Z. Pei, D.S. Miller, X. Wu, M.L. Block, B. Wilson, W. Zhang, Y. Zhou, J.S. Hong, et al. 2005. Aggregated alpha-synuclein activates microglia: a process leading to disease progression in Parkinson’s disease. FASEB Journal 19: 533–542.

    Article  CAS  PubMed  Google Scholar 

  42. Reynolds, A.D., I. Kadiu, S.K. Garg, J.G. Glanzer, T. Nordgren, P. Ciborowski, R. Banerjee, and H.E. Gendelman. 2008. Nitrated alpha-synuclein and microglial neuroregulatory activities. Journal of Neuroimmune Pharmacology 3: 59–74.

    Article  PubMed Central  PubMed  Google Scholar 

  43. Chen, H., E.J. O’Reilly, M.A. Schwarzschild, and A. Ascherio. 2008. Peripheral inflammatory biomarkers and risk of Parkinson’s disease. American Journal of Epidemiology 167: 90–95.

    Article  PubMed  Google Scholar 

  44. Wong, K.T., J.S. Grove, A. Grandinetti, J.D. Curb, M. Yee, P. Blanchette, et al. 2009. Association of fibrinogen with Parkinson disease in elderly Japanese-American men: a prospective study. Neuroepidemiology 34: 50–54.

    Article  PubMed Central  PubMed  Google Scholar 

  45. Margis, R., and C.R. Rieder. 2011. Identification of blood microRNAs associated to Parkinson’s disease. Journal of Biotechnology 152: 96–101.

    Article  CAS  PubMed  Google Scholar 

  46. LeWitt, P. 2012. Recent advances in CSF biomarkers for Parkinson’s disease. Parkinsonism & Related Disorders 18(Suppl 1): 49–51.

    Article  Google Scholar 

  47. LeWitt, P., L. Schultz, P. Auinger, and M. Lu. 2011. CSF xanthine, homovanillic acid, and their ratio as biomarkers of Parkinson’s disease. Brain Research 140: 88–97.

    Article  Google Scholar 

  48. Orrell, R.W., J.J. Habgood, A. Malaspina, et al. 1999. Clinical characteristics of SOD1 gene mutations in UK families with ALS. Journal of Neurological Science 169: 56–60.

    Article  CAS  Google Scholar 

  49. Blair, I.P., K.L. Williams, S.T. Warraich, et al. 2010. FUS mutations in amyotrophic lateral sclerosis: clinical, pathological, neurophysiological and genetic analysis. Journal of Neurology, Neurosurgery, and Psychiatry 81(6): 639–645.

    Article  PubMed  Google Scholar 

  50. Kabashi, E., P.N. Valdmanis, P. Dion, et al. 2008. TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis. Nature Genetics 40: 572–574.

    Article  CAS  PubMed  Google Scholar 

  51. World Federation of Neurology Research Group on Neuromuscular Diseases Subcommittee on Motor Neuron Disease. Airlie House guidelines. 1995. Therapeutic trials in amyotrophic lateral sclerosis. Airlie House, “Therapeutic Trials in ALS,” Workshop Contributors. Journal of Neurological Science 129: 1–10.

    Article  Google Scholar 

  52. Traynor, B.J., M.B. Codd, B. Corr, C. Forde, E. Frost, and O.M. Hardiman. 2000. Clinical features of amyotrophic lateral sclerosis according to the El Escorial and Airlie House diagnostic criteria: a population-based study. Archives of Neurology 57: 1171–1176.

    Article  CAS  PubMed  Google Scholar 

  53. Liu, Y., W. Hao, A. Dawson, S. Liu, and K. Fassbender. 2009. Expression of amyotrophic lateral sclerosis-linked SOD1 mutant increases the neurotoxic potential of microglia via TLR2. Journal of Biological Chemistry 284: 3691–3699.

    Article  CAS  PubMed  Google Scholar 

  54. Yiangou, Y., P. Facer, P. Durrenberger, I.P. Chessell, A. Naylor, C. Bountra, R.R. Banati, and P.Y. Anand. 2006. COX-2, CB2 and P2X7-immunoreactivities are increased in activated microglial cells/macrophages of multiple sclerosis and amyotrophic lateral sclerosis spinal cord. BMC Neurology 6: 12.

    Article  PubMed Central  PubMed  Google Scholar 

  55. Amit, I., M. Garber, N. Chevrier, A.P. Leite, Y. Donner, T. Eisenhaure, M. Guttman, J.K. Grenier, W. Li, O. Zuk, L.A. Schubert, B. Birditt, T. Shay, A. Goren, X. Zhang, Z. Smith, R. Deering, R.C. McDonald, M. Cabili, B.E. Bernstein, J.L. Rinn, A. Meissner, D.E. Root, N. Hacohen, and A. Regev. 2009. Unbiased reconstruction of a mammalian transcriptional network mediating pathogen responses. Science 326: 257–263.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Uranishi, H., T. Tetsuka, M. Yamashita, K. Asamitsu, M. Shimizu, M. Itoh, and T. Okamoto. 2001. Involvement of the pro-oncoprotein TLS (translocated in liposarcoma) in nuclear factor-kappa B p65-mediated transcription as a coactivator. Journal of Biological Chemistry 276: 13395–13401.

    Article  CAS  PubMed  Google Scholar 

  57. McGeer, P.L., and E.G. McGeer. 2008. Glial reactions in Parkinson’s disease. Movement Disorders 23: 474–483.

    Article  PubMed  Google Scholar 

  58. Zhang, R., R. Gascon, R.G. Miller, et al. 2005. Evidence for systemic immune system alterations in sporadic amyotrophic lateral sclerosis (sALS). Journal of Neuroimmunology 159: 215–224.

    Article  CAS  PubMed  Google Scholar 

  59. Mantovani, S., S. Garbelli, A. Pasini, et al. 2009. Immune system alterations in sporadic amyotrophic lateral sclerosis patients suggest an ongoing neuroinflammatory process. Journal of Neuroimmunology 210: 73–79.

    Article  CAS  PubMed  Google Scholar 

  60. Keizman, D., O. Rogowski, S. Berliner, et al. 2009. Low-grade systemic inflammation in patients with amyotrophic lateral sclerosis. Acta Neurologica Scandinavica 119: 383–389.

    Article  CAS  PubMed  Google Scholar 

  61. Turner, M.R., M.C. Kiernan, P.N. Leigh, and K. Talbot. 2009. Biomarkers in amyotrophic lateral sclerosis. Lancet Neurology 8: 94–109.

    Article  CAS  PubMed  Google Scholar 

  62. Nardo, G., S. Pozzi, M. Pignataro, E. Lauranzano, G. Spano, S. Garbelli, S. Mantovani, K. Marinou, L. Papetti, M. Monteforte, V. Torri, L. Paris, G. Bazzoni, C. Lunetta, M. Corbo, G. Mora, C. Bendotti, and V. Bonetto. 2011. Amyotrophic lateral sclerosis multiprotein biomarkers in peripheral blood mononuclear cells. PLoS One 6(10): e25545.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Lu, C.H., A. Petzold, B. Kalmar, J. Dick, A. Malaspina, and L. Greensmith. 2012. Plasma neurofilament heavy chain levels correlate to markers of late stage disease progression and treatment response in SOD1(G93A) mice that model ALS. PLoS One 7(7): e40998. doi:10.1371/journal.pone.0040998.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Mitchell, R.M., W.M. Freeman, W.T. Randazzo, H.E. Stephens, J.L. Beard, Z. Simmons, et al. 2009. A CSF biomarker panel for identification of patients with amyotrophic lateral sclerosis. Neurology 72: 14–19.

    Article  CAS  PubMed  Google Scholar 

  65. Beuche, W., M. Yushchenko, M. Mader, M. Maliszewska, K. Felgenhauer, and F. Weber. 2000. Matrix metalloproteinase-9 is elevated in serum of patients with amyotrophic lateral sclerosis. Neuroreport 11: 3419–3422.

    Article  CAS  PubMed  Google Scholar 

  66. Walker, F.O. 2007. Huntington’s disease. Lancet 369(9557): 218–228.

    Article  CAS  PubMed  Google Scholar 

  67. Moller, T. 2010. Neuroinflammation in Huntington’s disease. Journal of Neural Transmission 117(8): 1001–1008.

    Article  PubMed  Google Scholar 

  68. Li, S.H., and X.J. Li. 2004. Huntingtin–protein interactions and the pathogenesis of Huntington disease. Trends in Genetics 20: 146–154.

    Article  PubMed  Google Scholar 

  69. Orr, H.T., and H.Y. Zoghbi. 2007. Trinucleotide repeat disorders. Annual Review of Neuroscience 30: 575–621.

    Article  CAS  PubMed  Google Scholar 

  70. Imarisio, S., et al. 2008. Huntington disease: from pathology and genetics to potential therapies. Biochemistry Journal 412: 141–209.

    Article  Google Scholar 

  71. Roze, E., et al. 2008. Pathophysiology of Huntington’s disease: from huntingtin functions to potential treatments. Current Opinion in Neurology 21: 495–503.

    Google Scholar 

  72. Björkqvist, M., E.J. Wild, J. Thiele, A. Silvestroni, R. Andre, N. Lahiri, et al. 2008. A novel pathogenic pathway of immune activation detectable before clinical onset in Huntington’s disease. Journal of Experimental Medicine 205: 1869–1877.

    Article  PubMed Central  PubMed  Google Scholar 

  73. Khoshnan, A., J. Ko, E.E. Watkin, L.A. Paige, P.H. Reinhart, and P.H. Patterson. 2004. Activation of the IkappaB kinase complex and nuclear factor-kappaB contributes to mutant huntingtin neurotoxicity. Journal of Neuroscience 24: 7999–8008.

    Article  CAS  PubMed  Google Scholar 

  74. Cho, I.H., J. Hong, E.C. Suh, J.H. Kim, H. Lee, J.E. Lee, et al. 2008. Role of microglial IKK beta in kainic acid-induced hippocampal neuronal cell death. Brain 131: 3019–3303.

    Article  PubMed Central  PubMed  Google Scholar 

  75. Kurlan, R., E. Caine, A. Rubin, et al. 1988. Cerebrospinal fluid correlates of depression in Huntington’s disease. Archives of Neurology 45: 881–883.

    Article  CAS  PubMed  Google Scholar 

  76. Schwarcz, R., C.A. Tamminga, R. Kurlan, et al. 1988. Cerebrospinal fluid levels of quinolinic acid in Huntington’s disease and schizophrenia. Annals of Neurology 24: 580–582.

    Article  CAS  PubMed  Google Scholar 

  77. Montine, T.J., M.F. Beal, D. Robertson, et al. 1999. Cerebrospinal fluid F2-isoprostanes are elevated in Huntington’s disease. Neurology 52: 1104–1105.

    Article  CAS  PubMed  Google Scholar 

  78. Jeitner, T.M., M.B. Bogdanov, W.R. Matson, et al\. 2001. N(epsilon)-(gamma-L-glutamyl)-L-lysine (GGEL) is increased in cerebrospinal fluid of patients with Huntington’s disease. Journal of Neurochemistry 79: 1109–1112.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Italian Ministry of Economy and Finance with the “PNR-CNR Aging Program 2012-2014” project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Di Carlo.

Additional information

Domenico Nuzzo and Pasquale Picone contributed equally to this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nuzzo, D., Picone, P., Caruana, L. et al. Inflammatory Mediators as Biomarkers in Brain Disorders. Inflammation 37, 639–648 (2014). https://doi.org/10.1007/s10753-013-9780-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-013-9780-2

KEY WORDS

Navigation