Skip to main content

Advertisement

Log in

The Burn Wound Inflammatory Response Is Influenced by Midazolam

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Burn patients requiring hospitalization are often treated for anxiety with benzodiazepines (BDZs). Benzodiazepines are reported to influence immune system function. Immune system alterations are a major cause of burn-induced mortality. We wanted to determine whether the BDZ, midazolam given daily at an anxiolytic dose, had any influence on the burn injury-induced inflammatory response in the blood and wound. Mice received a 15% total body surface area flame burn and received either midazolam 1 mg/kg i.p. or saline 0.1 ml daily. Blood and skin wounds were harvested 24 h after injection on post-burn day 2, 3, 7, or 8. Mice treated with midazolam had significantly lower serum IL-1β (p = 0.002), TNF-α (p = 0.002), IL-6 (p = 0.016), IL-10 (p = 0.009), and TGF-β (p = 0.004) than saline-treated mice, with little impact on serum chemokine levels. In the wound, TNF-α and IL-10 were the only cytokines significantly influenced by the drug, being lower (p = 0.018) and higher (p = 0.006), respectively. The chemokines in the wound influenced significantly by midazolam were MIP-1α, MIP-1β, and MIP-2 while MCP-1 and KC were not. There were more inflammatory cells at the burn wound margin in midazolam-treated mice on post-burn day 3. Although serum nitrate/nitrite was significantly increased by midazolam (p = 0.03), both eNOS and iNOS mRNA expression in the wound were similar to the saline group. We found that midazolam given daily after burn injury significantly influenced the inflammatory response. The clinical implications of these findings on wound healing and shock following burn injury, especially larger burns, deserve further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

REFERENCES

  1. Horgan, A.F., M.V. Mendez, D.S. O’Riordain, R.G. Holzheimer, J.A. Mannick, and M.L. Rodrick. 1994. Altered gene transcription after burn injury results in depressed T-lymphocyte activation. Annals of Surgery 220: 342–351.

    Article  PubMed  CAS  Google Scholar 

  2. Holzheimer, R.G., R. Molloy, M.F. Mendez, D. O’Riordain, P. Curley, M. Nestor, K. Collins, I. Saproschetz, J.A. Mannick, and M.L. Rodrik. 1995. Multiple system organ failure may be influenced by macrophage hypoactivation as well as hyperactivation—importance of the double challenge. The European Journal of Surgery 161: 795–803.

    PubMed  CAS  Google Scholar 

  3. Schwacha, M., E. Nickel, and T. Daniel. 2008. Burn injury-induced alterations in wound inflammation and healing are associated with suppressed hypoxia inducible factor-1 alpha expression. Molecular Medicine 14: 628–633.

    Article  PubMed  CAS  Google Scholar 

  4. Maung, A.A., S. Fujimi, M.P. MacConmara, G. Taima, A.M. McKenna, A.J. Delisle, C. Stallwood, A.B. Onderdonk, J.A. Mannick, and J.A. Lederer. 2008. Injury enhances resistance to Escherichia coli infection by boosting innate immune system function. Journal of Immunology 180: 2450–2458.

    CAS  Google Scholar 

  5. Sakallioglu, A.E., O. Basaran, H. Karakayali, B. Ozdemir, M. Yucel, Z. Arat, and M. Haberal. 2006. Interactions of systemic immune response and local wound healing in different burn depths: an experimental study in rats. Journal of Burn Care & Research 27: 357–366.

    Article  Google Scholar 

  6. Ratcliff, S., A. Brown, L. Rosenberg, M. Rosenberg, R. Robert, L. Cuervo, C. Villarreal, C. Thomas, and W. Meyer. 2006. The effectiveness of a pain and anxiety protocol to treat the acute pediatric burn patient. Burns 32: 554–562.

    Article  PubMed  Google Scholar 

  7. Tcheung, W., R. Robert, L. Rosenberg, M. Rosenberg, C. Villarreal, C. Thomas, C. Holzer, and W. Meyer. 2005. Early treatment of acute stress disorder in children with major burn injury. Pediatric Critical Care Medicine 6: 676–681.

    Article  PubMed  Google Scholar 

  8. Dugan, A., K.A. Gregerson, A. Neely, J. Gardner, G. Noel, G. Babcock, and N.D. Horseman. 2010. Lindberg award: mice treated with a benzodiazepine had an improved survival rate following Pseudomonas aeruginosa infection. Journal of Burn Care & Research 31: 1–12.

    Article  Google Scholar 

  9. Sakai, M., E.S. Fonseca, M.L. Dagli, and J. Palermo-Neto. 2005. Diazepam effects on Ehrlich tumor growth and macrophage activity in mice. Life Sciences 78: 1777–1783.

    Article  PubMed  Google Scholar 

  10. Schreiber, A.A., K. Frei, W. Lichtensteiger, and M. Schlumpf. 1993. The effect of prenatal diazepam exposure on TNF-α production by rat splenocytes. Agents and Actions 38: 265–272.

    Article  PubMed  CAS  Google Scholar 

  11. Zaval, F., V. Taupin, and B. Descamps-Latscha. 1990. In vivo treatment with benzodiazepines inhibits murine phagocyte oxidative metabolism and production of interleukin 1, tumor necrosis factor and interleukin 6. The Journal of Pharmacology and Experimental Therapeutics 255: 442–450.

    Google Scholar 

  12. Furukawa, K., M. Kobayashi, D.N. Herndon, R.B. Pollard, and F. Suzuki. 2002. Appearance of monocyte chemoattractant protein 1 (MCP-1) early after thermal injury: role in the subsequent development of burn associated type 2 T-cell responses. Annals of Surgery 236: 112–119.

    Article  PubMed  Google Scholar 

  13. Vindenes, H.A., E. Ulvestad, and R. Bjerknes. 1998. Concentrations of cytokines in plasma of patients with large burns: their relation to time after injury, burn size, inflammatory variables, infection, and outcome. The European Journal of Surgery 164: 647–656.

    Article  PubMed  CAS  Google Scholar 

  14. Alexander, M., T. Daniel, I.H. Chaudry, M.A. Choudhry, and M. Schwacha. 2006. T cells of the gammadelta T-cell receptor lineage play an important role in the postburn wound healing process. Journal of Burn Care & Research 27: 18–25.

    Article  Google Scholar 

  15. Werner, M., R. von Wasielewski, and P. Komminoth. 1996. Antigen retrieval, signal amplification and intensification in immunohistochemistry. Histochemistry and Cell Biology 105: 253–260.

    Article  PubMed  CAS  Google Scholar 

  16. Bozza, F., J.I. Salluh, and A. Japiassu. 2007. Cytokine profiles as markers of disease severity in sepsis: a multiplex analysis. Critical Care 11: R49.

    Article  PubMed  Google Scholar 

  17. Osuchowski, M.F., K. Welch, J. Siddiqui, and D. Remick. 2006. Circulating cytokine/inhibitor profiles reshape the understanding of the SIRS/CARS continuum in sepsis and predict mortality. Journal of Immunology 177: 1967–1974.

    CAS  Google Scholar 

  18. Zhu, H., B. Ka, and F. Murad. 2007. Nitric oxide accelerates the recovery from burn wounds. World Journal of Surgery 31: 624–631.

    Article  PubMed  Google Scholar 

  19. Galdiero, F., C. Bentivoglio, and I. Nuzzol. 1995. Effects of benzodiazepines on immunodeficiency and resistance in mice. Life Sciences 57: 2413–2423.

    Article  PubMed  CAS  Google Scholar 

  20. Neely, A., J. Gardner, P. Durkee, G. Warden, D. Greenhalgh, J. Gallagher, D. Herndon, R. Tomkins, and R. Kagan. 2009. Are topical antimicrobials effective against bacteria that are highly resistant to systemic antibiotics? Journal of Burn Care & Research 30: 19–29.

    Article  Google Scholar 

  21. Henry, G., and W. Garner. 2003. Inflammatory mediators in wound healing. The Surgical Clinics of North America 83: 483–507.

    Article  PubMed  Google Scholar 

  22. Charo, I.F., and R. Ransohoff. 2006. The many roles of chemokines and chemokine receptors in inflammation. The New England Journal of Medicine 354: 610–621.

    Article  PubMed  CAS  Google Scholar 

  23. Schwacha, M., B. Thobe, T. Daniel, and W. Hubbard. 2010. Impact of thermal injury on wound infiltration and the dermal inflammatory response. The Journal of Surgical Research 158: 112–120.

    Article  PubMed  CAS  Google Scholar 

  24. Dardalhon, V., A. Anderson, J. Karman, L. Apetoh, R. Chandwaskar, D. Lee, M. Cornejo, N. Nishi, A. Yamauchi, F. Quintana, R. Sobel, M. Hirashima, and V. Kuchroo. 2010. Tim-3/galectin-9 pathway: regulation of Th1 immunity through promotion of CD11b+Ly6G+ myeloid cells. Journal of Immunology 185: 1383–1392.

    Article  CAS  Google Scholar 

  25. van der Does, A., H. Beekhuizen, B. Ravensbergen, T. Vos, T. Ottenhoff, J. van Dissel, J. Drijfhout, P. Hiemstra, and P. Nibbering. 2010. LL-37 directs macrophage differentiation toward macrophages with a proinflammatory signature. Journal of Immunology 185: 1442–1449.

    Article  Google Scholar 

  26. Oliveira, G., K. Shimoda, P. Enkhbaatar, J. Jodoin, A. Burke, D. Chinkes, H. Hawkins, D. Herndon, L. Traber, D. Traber, and K. Murakami. 2004. Skin nitric oxide and its metabolites are increased in nonburned skin after thermal injuries. Shock 22: 278–282.

    Article  PubMed  CAS  Google Scholar 

  27. Tsuda, Y., K. Shigematsu, M. Kobayashi, D. Herndon, and F. Suzuki. 2008. Role of polymorphonuclear neutrophils on infectious complications stemming from Enterococcus faecalis oral infection in thermally injured mice. Journal of Immunology 180: 4133–4138.

    CAS  Google Scholar 

  28. Gosain, A., K. Muthu, R.L. Gamelli, and L. DiPietro. 2007. Norepinephrine suppresses wound macrophage phagocytic efficiency through alpha- and beta-adrenoreceptor dependent pathways. Surgery 142: 170–179.

    Article  PubMed  Google Scholar 

  29. Brownstein, B., T. Logvinenko, J. Lederer, J. Cobb, W. Hubbard, I. Chaudry, D. Remick, H. Baker, W. Xiao, and J. Mannick. 2006. Commonality and differences in leukocyte gene expression patterns among three models of inflammation and injury. Physiological Genomics 24: 298–309.

    Article  PubMed  CAS  Google Scholar 

  30. Mandal, P., S. Roychowdhury, P. Park, B. Pratt, T. Roger, and L. Nagy. 2010. Adiponectin and heme oxygenase-1 suppress TLR4/MyD88-independent signaling in rat Kupffer cells and in mice after chronic ethanol exposure. Journal of Immunology 185: 4928–4937.

    Article  CAS  Google Scholar 

  31. Bjorkbacka, H., K. Fitzgerald, F. Huet, X. Li, J. Gregory, M. Lee, C. Ordija, N. Dowley, D. Golenbock, and M. Freeman. 2004. The induction of macrophage gene expression by LPS predominantly utilizes MyD88-independent signaling cascades. Physiological Genomics 19: 319–330.

    Article  PubMed  Google Scholar 

  32. Kim, S., S. Son, S. Lee, C. Kim, D. Yoo, S. Lee, G. Hur, J. Park, and B. Jeon. 2006. Midazolam inhibits proinflammatory mediators in the lipopolysaccharide-activated macrophage. Anesthesiology 105: 105–110.

    Article  PubMed  CAS  Google Scholar 

  33. Skerrett, S., C. Wilson, D. Liggitt, and A. Hajjar. 2007. Redundant Toll-like receptor signaling in the pulmonary host response to Pseudomonas aeruginosa. American Journal of Physiology. Lung Cellular and Molecular Physiology 292: L312–L322.

    Article  PubMed  CAS  Google Scholar 

  34. Sun, Y., M. Karmakar, S. Roy, R. Ramadan, S. Williams, S. Howell, C. Shive, Y. Han, C. Stopford, A. Rietsch, and E. Pearlman. 2010. TLR4 and TLR5 on corneal macrophages regulate Pseudomonas aeruginosa keratitis by signaling through MyD88-dependent and-independent pathways. Journal of Immunology 185: 4272–4283.

    Article  CAS  Google Scholar 

  35. Raoust, E., V. Balloy, I. Garcia-Verdugo, L. Touqui, R. Ramphal, and M. Chignard. 2009. Pseudomonas aeruginosa LPS or flagellin are sufficient to activate TLR-dependent signaling in murine alveolar macrophages and airway epithelial cells. PLoS ONE 4: e7259.

    Article  PubMed  Google Scholar 

  36. Gosain, A., S. Jones, R. Shankar, R. Gamelli, and L. DiPietro. 2006. Norepinephrine modulates the inflammatory and proliferative phases of wound healing. The Journal of Trauma 60: 736–744.

    Article  PubMed  CAS  Google Scholar 

  37. Karulf, M., A. Kelly, A. Weinberg, and J. Gold. 2010. OX40 ligand regulates inflammation and mortality in the innate immune response to sepsis. Journal of Immunology 185: 4856–4862.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We appreciate Erin Pangallo and Mike Murawsky for their technical assistance and help with the animal care. We thank Dr. Steve Boyce for his help with the planimetry. We also thank Greg Noel and Nelson Horseman for their helpful suggestions. This work was funded by the Shriners of North America.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amy Dugan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Babcock, G.F., Hernandez, L., Yadav, E. et al. The Burn Wound Inflammatory Response Is Influenced by Midazolam. Inflammation 35, 259–270 (2012). https://doi.org/10.1007/s10753-011-9313-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-011-9313-9

KEY WORDS

Navigation