Skip to main content

Advertisement

Log in

Enteropathogenic Escherichia coli Outer Membrane Proteins Induce iNOS by Activation of NF-κB and MAP Kinases

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Enteropathogenic Escherichia coli (EPEC) infects the human intestinal epithelium and is a major cause of infantile diarrhea in developing countries. Nitric oxide (NO) is an important modulator of intestinal inflammatory response. The aim of the present study was to investigate whether EPEC outer membrane proteins (OMPs) up regulate epithelial cell expression of inducible nitric oxide synthase (iNOS) and to examine the role of NF-κB and MAP kinases (MAPK) on nitrite production. iNOS mRNA expression was assessed by RT-PCR. Nitrite levels were measured by Griess reaction. NF-κB activation by OMPs was evaluated by EMSA and immunoblotting was done to detect MAPK activation. EPEC OMP up regulated iNOS, induced nitrite production and NF-κB and MAPK were activated in caco-2 cells. The nitrite levels decreased when NF-κB and MAPK inhibitors were used. Thus, EPEC OMPs induce iNOS expression and NO production through activation of NF-κB and MAPK.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Levine, M. M., and R. Edelman. 1984. Enteropathogenic Escherichia coli of classic serotypes associated with infant diarrhea: Epidemiology and pathogenesis. Epidemiol. Rev. 6:31–51.

    PubMed  Google Scholar 

  2. Kenny, B., R. DeVinney, M. Stein, D. Reinscheid, E. Frey, and B. Finlay. 1997. Enteropathogenic E. coli (EPEC) transfers its receptor for intimate adherence into mammalian cells. Cell 91:511–520.

    Article  PubMed  Google Scholar 

  3. Savkovic, S., A. Koutsouris, and G. Hecht. 1997. Activation of NF-κB in intestinal epithelial cells by enteropathogenic Escherichia coli. Am. J. Physiol. 273:C1160–C1167.

    PubMed  Google Scholar 

  4. Savkovic, S., A. Koutsouris, and G. Hecht. 1996. Attachment of a noninvasive enteric pathogen, enteropathogenic Escherichia coli, to cultured human intestinal epithelial monolayers induces transmigration of neutrophils. Infect. Immun. 64:4480–4487.

    PubMed  Google Scholar 

  5. Czerucka, D., S. Dahan, B. Mograbi, B. Rossi, and P. Rampal. 2001. Implication of mitogen-activated protein kinases in T84 cell responses to enteropathogenic Escherichia coli infection. Infect. Immun. 69:1298–1305.

    Article  PubMed  Google Scholar 

  6. de Grado, M., C. M. Rosenberger, A. Gauthier, B. A. Vallance, and B. B. Finlay. 2001. Enteropathogenic Escherichia coli infection induces expression of the early growth response factor by activating mitogen-activated protein kinase cascades in epithelial cells. Infect. Immun. 69:6217–6224.

    Article  PubMed  Google Scholar 

  7. Hecht, G. 2001. Microbes and microbial toxins: Paradigms for microbial mucosal interactions. VII. Enteropathogenic Escherichia coli: Physiological alterations from an extracellular position. Am. J. Physiol. Gastrointest. Liver Physiol. 281:G1–G7.

    PubMed  Google Scholar 

  8. Savkovic, S. D., A. Ramaswamy, A. Koutsouris, and G. Hecht. 2001. EPEC activated ERK1/2 participate in inflammatory response but not tight junction barrier disruption. Am. J. Physiol. Gastrointest. Liver Physiol. 281:G890–G898.

    PubMed  Google Scholar 

  9. Baldwin, T. J., S. F. Brooks, S. Knutton, H. A. Manjarrez Hernandez, A. Aitken, and P. H. Williams. 1990. Protein phosphorylation by protein kinase C in HEp-2 cells infected with enteropathogenic Escherichia coli. Infect. Immun. 58:761–765.

    PubMed  Google Scholar 

  10. Rosenshine, I., M. Donnenberg, J. B. Kaper, and B. B. Finlay. 1992. Signal transduction between enteropathogenic Escherichia coli (EPEC) and epithelial cells: EPEC induces tyrosine phosphorylation of host cell proteins to initiate cytoskeletal rearrangement and bacterial uptake. EMBO J. 11:3551–3560.

    PubMed  Google Scholar 

  11. Celli, J., M. Olivier, and B. B. Finlay. 2001. Enteropathogenic Escherichia coli mediates antiphagocytosis through the inhibition of PI3-kinase-dependent pathways. EMBO J. 20:1245–1258.

    Article  PubMed  Google Scholar 

  12. Witthoft, T., L. Eckmann, J. M. Kim, and M. F. Kagnoff. 1998. Enteroinvasive bacteria directly activate expression of iNOS and NO production in human colon epithelial cells. Am. J. Physiol. 275:G564–G571.

    PubMed  Google Scholar 

  13. Vallance, B. A., W. Deng, M. D. Grado, C. Chan, K. Jacobson, and B. B. Finlay. 2002. Modulation of inducible nitric oxide synthase expression by attaching and effacing bacterial pathogen Citrobacter rodentium in infected mice. Infect. Immun. 70:6424–6435.

    Article  PubMed  Google Scholar 

  14. Davis, R. J. 1993. The mitogen-activated protein kinase signal transduction pathway. J. Biol. Chem. 268:14553–14556.

    PubMed  Google Scholar 

  15. Zhou, X., A. J. Giron, A. G. Torres, J. A. Crawford, E. Negrete, S. N. Vogel, and J. B. Kaper. 2003. Flagellin of enteropathogenic Escherichia coli stimulates interleukin-8 production in T84 cells. Infect. Immun. 71:2120–2129.

    Article  PubMed  Google Scholar 

  16. Xie, Q.-W., Y. Kashiwabara, and C. Nathan. 1994. Role of transcription factor NF-κB/Rel in induction of nitric oxide synthase. J. Biol. Chem. 269:4705–4708.

    PubMed  Google Scholar 

  17. Goldring, C. E. P., R. Narayanan, P. Lagadec, and J.-F. Jeannin. 1995. Transcriptional inhibition of the inducible nitric oxide synthase gene by competitive binding of NF-κB/Rel proteins. Biochem. Biophys. Res. Commun. 209:73–79.

    Article  PubMed  Google Scholar 

  18. Kumar, S. S., V. Malladi, K. Sankaran, R. Haigh, P. H. Williams, and A. Balakrishnan. 2001. Extrusion of actin-positive strands from HEp-2 and Int 407 cells caused by outer membrane preparations of enteropathogenic Escherichia coil and specific attachment of wild type bacteria to the Strands. Can. J. Microbiol. 47:727–734.

    Article  PubMed  Google Scholar 

  19. Kumar, S. S., K. Sankaran, R. Haigh, P. H. Williams, and A. Balakrishnan. 2001. Cytopathic effects of outer-membrane preparations of enteropathogenic Escherichia coli and co-expression of maltoporin with secretory virulence factor, EspB. J. Med. Microbiol. 50:602–612.

    PubMed  Google Scholar 

  20. Malladi, V., B. Shankar, P. H. Williams, and A. Balakrishnan. 2004. Enteropathogenic Escherichia coli outer membrane proteins induce changes in cadherin junctions of caco-2 cells through activation of PKCα. Microbes Infect. 6:38–50.

    Article  PubMed  Google Scholar 

  21. Finlay, B. B., I. Rosenshine, M. S. Donnenberg, and J. B. Kaper. 1992. Cytoskeletal composition of attaching and effacing lesions associated with enteropathogenic Escherichia coli adherence to HeLa cells. Infect. Immun. 60:2541–2543.

    PubMed  Google Scholar 

  22. Knutton, S., T. Baldwin, P. H. Williams, and A. S. McNeish. 1989. Actin accumulation at sites of bacterial adhesion to tissue culture cells: Basis of a new diagnostic test for enteropathogenic and enterohemorrhagic Escherichia coli. Infect. Immun. 57:1290–1298.

    PubMed  Google Scholar 

  23. Baldini, M. M., J. B. Kaper, M. M. Levine, D. C. Candy, and H. W. Moon. 1983. Plasmid-mediated adhesion in enteropathogenic Escherichia coli. J. Pediatr. Gastroenterol. Nutr. 2:534–538.

    Google Scholar 

  24. Donnenberg, M. S., and J. B. Kaper. 1991. Construction of an eae deletion mutant of enteropathogenic Escherichia coli by using a positive-selection suicide vector. Infect. Immun. 59:4310–4317.

    Google Scholar 

  25. Jerse, A. E., K. G. Gicquelais, and J. B. Kaper. 1991. Plasmid and chromosomal elements involved in the pathogenesis of attaching and effacing Escherichia coli. Infect. Immun. 59:3869–3875.

    PubMed  Google Scholar 

  26. Jerse, A. E., and J. B. Kaper. 1991. The eae gene of enteropathogenic Escherichia coli encodes a 94-kilodalton membrane protein, the expression of which is influenced by the EAF plasmid. Infect. Immun. 59:4302–4309.

    PubMed  Google Scholar 

  27. Miyamoto, S., P. J. Chiao, and I. M. Verma. 1994. Enhanced IκBα degradation is responsible for constitutive NF-κB activity in mature murine B-cell lines. Mol. Cell. Biol. 14:3276–3282.

    PubMed  Google Scholar 

  28. Narayanan, K., A. Balakrishnan, and S. Miyamoto. 2000. NF-κB is essential for induction of proinflammatory cytokine genes by filarial parasitic sheath proteins. Mol. Immunol. 37:115–123.

    Article  PubMed  Google Scholar 

  29. Hall, L. R., R. K. Mehlotra, A. W. Higgins, M. A. Haxhiu, and E. Pearlman. 1998. An essential role for interleukin-5 and eosinophils in helminth-induced airway hyperresponsiveness. Infect. Immun. 66:4425–4430.

    PubMed  Google Scholar 

  30. Green, L. C., D. A. Wagner, J. Glogowski, P. L. Skipper, J. S. Wishnok, and S. R. Tannenbaum. 1982. Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids. Anal. Biochem. 126:131–138.

    Article  PubMed  Google Scholar 

  31. Savkovic, S. D., A. Koutsouris, and G. Hecht. 2003. PKC ζ participates in activation of inflammatory response induced by enteropathogenic E. coli. Am. J. Physiol. Cell Physiol. 285:C512–C521.

    PubMed  Google Scholar 

  32. Foubister, V., I. Rosenshine, and B. B. Finlay. 1994. A diarrheal pathogen, enteropathogenic Escherichia coli (EPEC), triggers a flux of inositol phosphates in infected epithelial cells. J. Exp. Med. 179:993–998.

    Article  PubMed  Google Scholar 

  33. Kim, J. M., J. S. Kim, H. C. Jung, I. S. Song, and C. Y. Kim. 2002. Up-regulation of inducible nitric oxide synthase and nitric oxide in Helicobacter pylori-infected human gastric epithelial cells: Possible role of interferon-γ in polarized nitric oxide secretion. Helicobacter 7:116–125.

    Article  PubMed  Google Scholar 

  34. Mysorekar, I. U., M. A. Mulvey, S. J. Hultgren, and J. I. Gordon. 2002. Molecular regulation of urothelial renewal and host defenses during infection with uropathogenic Escherichia coli. J. Biol. Chem. 277:7412–7419.

    Article  PubMed  Google Scholar 

  35. Frankel, G., O. Lider, R. Hershkoviz, A. P. Mould, and S. G. Kachalsky. 1996. The cell-binding domain of intimin from enteropathogenic Escherichia coli binds to betal integrins. J. Biol. Chem. 271:20359–20364.

    Article  PubMed  Google Scholar 

  36. Frankel, G., A. D. Phillips, L. R. Trabulsi, S. Knutton, G. Dougan, and S. Matthews. 2001. Intimin and the host cell—Is it bound to end in Tir(s)?. Trends. Microbiol. 9:214–218.

    Article  PubMed  Google Scholar 

  37. Higgins, L. M., G. Frankel, I. Connerton, N. S. Goncalves, G. Dougan, and T. T. MacDonald. 1999. Role of bacterial intimin in colonic hyperplasia and inflammation. Science 285:588–591.

    Article  PubMed  Google Scholar 

  38. Didierlaurent, A., J. C. Sirard, J. P. Kraehenbuhl, and M. R. Neutra. 2002. How the gut senses its content. Cell. Microbiol. 4:61–72.

    Article  PubMed  Google Scholar 

  39. Giron, J. A., A. G. Torres, E. Freer, and J. B. Kaper. 2002. The flagella of enteropathogenic Escherichia coli mediate adherence to epithelial cells. Mol. Microbiol. 44:361–379.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun Balakrishnan.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malladi, V., Puthenedam, M., Williams, P.H. et al. Enteropathogenic Escherichia coli Outer Membrane Proteins Induce iNOS by Activation of NF-κB and MAP Kinases. Inflammation 28, 345–353 (2004). https://doi.org/10.1007/s10753-004-6645-8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-004-6645-8

Keywords

Navigation