Skip to main content

Advertisement

Log in

RSV Causes HIF-1α Stabilization via NO Release in Primary Bronchial Epithelial Cells

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

RSV infection is characterized by airway edema. Stabilization of hypoxia inducible factor-1α (HIF-1α) is important in both inflammation and edema formation. In this study we evaluated whether RSV induced release of nitric oxide (NO) by bronchial airway epithelial cells leading to the stabilization of HIF-1α and subsequent transcription of VEGF165. Primary human bronchial epithelial cells (HBEpC) were used; cell supernatants were analyzed. Western blot analysis was used for the detection of HIF-1α. Bronchial airway epithelial monolayer permeability was assessed using electric cell-substrate impedance sensing (ECIS) in real time. There was increased stabilization of HIF-1α in RSV infected cells. Addition of an NO inhibitor blocked RSV mediated HIF-1α expression. Antagonism of NO also inhibited VEGF production and HBEpC monolayer permeability. Our results demonstrate that in HBEpC, RSV induced NO causes stabilization of HIF-1α in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

RSV:

Respiratory Syncytial Virus; NO, Nitric Oxide; HIF-1α, Hypoxia Inducible Factor-1α; VEGF, Vascular Endothelial Growth Factor; Carboxy PTIO, Carboxy 2-(4-Carbixyphenyl)-4, 4, 5, 5-tetramethylimidazoline-1oxyl-3-oxide sodium salt.

References

  1. Dodge, R., F. D. Martinez, M. G. Cline, M. D. Lebowitz, and B. Burrows. 1996. Early childhood respiratory symptoms and the subsequent diagnosis of asthma. J. Allergy Clin. Immunol. 98:48–54.

    PubMed  Google Scholar 

  2. Shay, D. K., R. C. Holman, R. D. Newman, L. L. Liu, J. W. Stout, and L. J. Anderson. 1999. Bronchiolitis-associated hospitalizations among US children, 1980–1996. JAMA 282:1440–1446.

    Article  PubMed  Google Scholar 

  3. Dowell, S. F., L. J. Anderson, H. E. Gary, Jr., D. D. Erdman, J. F. Plouffe, T. M. File, Jr., B. J. Marston, and R. F. Breiman. 1996. Respiratory syncytial virus is an important cause of community-acquired lower respiratory infection among hospitalized adults.J. Infect. Dis. 174:456–462.

    PubMed  Google Scholar 

  4. Falsey, A. R., C. K. Cunningham, W. H. Barker, R. W. Kouides, J. B. Yuen, M. Menegus, L. B. Weiner, C. A. Bonville, and R. F. Betts. 1995. Respiratory syncytial virus and influenza A infections in the hospitalized elderly. J. Infect. Dis. 172:389–394.

    PubMed  Google Scholar 

  5. Bar-on, M. E., and J. R. Zanga. 1996. Bronchiolitis. Prim. Care 23:805–819.

    PubMed  Google Scholar 

  6. Hayden, F. G., D. D. Richman, and R. J. Whitley, eds. 1997. Clinical Virology. Churchill Livingstone, New York.

    Google Scholar 

  7. Roberts, W. G. and G. E. Palade. 1997. Neovasculature induced by vascular endothelial growth factor is fenestrated. Cancer Res. 57:765–772.

    PubMed  Google Scholar 

  8. Antony, A. B., R. S. Tepper, and K. A. Mohammed. 2002. Cockroach extract antigen increases bronchial airway epithelial permeability. J. Allergy Clin. Immunol. 110:589–595.

    Article  PubMed  Google Scholar 

  9. Sriram, P. S., K. A. Mohammed, N. Nasreen, J. Hardwick, R. Van Horn, K. Sanders, and V. B. Antony. 2002. Adherence of ovarian cancer cells induces pleural mesothelial cell (PMC) permeability. Oncol. Res. 13:79–85.

    PubMed  Google Scholar 

  10. Lee, C. G., H. J. Yoon, Z. Zhu, H. Link, Z. Wang, J. M. Gwaltney, M. Landry, and J. A. Elias. 2000. Respiratory syncytial virus stimulation of vascular endothelial cell growth Factor/Vascular permeability factor. Am. J. Respir. Cell. Mol. Biol. 23:662–669.

    PubMed  Google Scholar 

  11. Semenza, G. L. 2001. Hypoxia-inducible factor 1: control of oxygen homeostasis in health and disease. Pediatr. Res. 49:614–617.

    PubMed  Google Scholar 

  12. Jaakkola, P., D. R. Mole, Y. M. Tian, M. I. Wilson, J. Gielbert, S. J. Gaskell, A. Kriegsheim, H. F. Hebestreit, M. Mukherji, C. J. Schofield, et al. 2001. Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292:468–472.

    PubMed  Google Scholar 

  13. Ivan, M., K. Kondo, H. Yang, W. Kim, J. Valiando, M. Ohh, A. Salic, J. M. Asara, W. S. Lane, and W. G. Kaelin, Jr. 2001. HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: Implications for O2 sensing. Science 292:464–468.

    PubMed  Google Scholar 

  14. Sandau, K. B., J. Fandrey, and B. Brune. 2001. Accumulation of HIF-1alpha under the influence of nitric oxide. Blood 97:1009–1015.

    Article  PubMed  Google Scholar 

  15. Maxwell, P. H., M. S. Wiesener, G. W. Chang, S.C. Clifford, E. C. Vaux, M. E. Cockman, C. C. Wykoff, C. W. Pugh, E. R. Maher, and P. J. Ratcliffe. 1999. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399:271–275.

    Article  PubMed  Google Scholar 

  16. Cramer, T., Y. Yamanishi, B. E. Clausen, I. Forster, R. Pawlinski, N. Mackman, V. H. Haase, R. Jaenisch, M. Corr, V. Nizet, et al. 2003. HIF-1alpha is essential for myeloid cell-mediated inflammation. Cell 112:645–657.

    Article  PubMed  Google Scholar 

  17. Wang, G. L., B. H. Jiang, and G. L. Semenza. 1995. Effect of altered redox states on expression and DNA-binding activity of hypoxia-inducible factor 1. Biochem. Biophys. Res. Commun. 212:550–556.

    Article  PubMed  Google Scholar 

  18. Kao, Y. J., P. A. Piedra, G. L. Larsen, and G. N. Colasurdo. 2001. Induction and regulation of nitric oxide synthase in airway epithelial cells by respiratory syncytial virus. Am. J. Respir. Crit. Care Med. 163:532–539.

    PubMed  Google Scholar 

  19. Mohammed, K. A., N. Nasreen, J. Hardwick, C. S. Logie, C. E. Patterson, and V. B. Antony. 2001. Bacterial induction of pleural mesothelial monolayer barrier dysfunction. Am. J. Physiol. Lung Cell. Mol. Physiol. 281:L119–125.

    PubMed  Google Scholar 

  20. Lundien, M. C., K. A. Mohammed, N. Nasreen, R. S. Tepper, J. A. Hardwick, K. L. Sanders, R. D. Van Horn, and V. B. Antony. 2002. Induction of MCP-1 expression in airway epithelial cells: Role of CCR2 receptor in airway epithelial injury. J. Clin. Immunol. 22:144–152.

    Article  PubMed  Google Scholar 

  21. Goldie, R. G., and K. E. Pedersen. 1995. Mechanisms of increased airway microvascular permeability: Role in airway inflammation and obstruction. Clin. Exp. Pharmacol. Physiol. 22:387–396.

    PubMed  Google Scholar 

  22. Deguchi, M., H. Sakuta, K. Uno, K. Inaba, and S. Muramatsu. 1995. Exogenous and endogenous type I interferons inhibit interferon-gamma-induced nitric oxide production and nitric oxide synthase expression in murine peritoneal macrophages. J. Interferon. Cytokine Res. 15:977–984.

    PubMed  Google Scholar 

  23. Faure, V., Y. Courtois, and O. Goureau. 1997. Inhibition of inducible nitric oxide synthase expression by interferons alpha and beta in bovine retinal pigmented epithelial cells. J. Biol. Chem. 272:32169–32175.

    Article  PubMed  Google Scholar 

  24. Sandau, K. B., H. G. Faus, and B. Brune. 2000. Induction of hypoxia-inducible-factor 1 by nitric oxide is mediated via the PI 3K pathway. Biochem. Biophys. Res. Commun. 278:263–267.

    Article  PubMed  Google Scholar 

  25. Kimura, H., A. Weisz, Y. Kurashima, K. Hashimoto, T. Ogura, F. D’Acquisto, R. Addeo, M. Makuuchi, and H. Esumi. 2000. Hypoxia response element of the human vascular endothelial growth factor gene mediates transcriptional regulation by nitric oxide: Control of hypoxia-inducible factor-1 activity by nitric oxide. Blood 95:189–197.

    PubMed  Google Scholar 

  26. Palmer, L. A., B. Gaston, and R. A. Johns. 2000. Normoxic stabilization of hypoxia-inducible factor-1 expression and activity: Redox-dependent effect of nitrogen oxides. Mol. Pharmacol. 58:1197–1203.

    PubMed  Google Scholar 

  27. Kimura, H., A. Weisz, T. Ogura, Y. Hitomi, Y. Kurashima, K. Hashimoto, F. D’Acquisto, M. Makuuchi, and H. Esumi. 2001. Identification of hypoxia-inducible factor 1 ancillary sequence and its function in vascular endothelial growth factor gene induction by hypoxia and nitric oxide. J. Biol. Chem. 276:2292–2298.

    PubMed  Google Scholar 

  28. Semenza, G. L. 1999. Regulation of mammalian O2 homeostasis by hypoxia-inducible factor 1. Annu. Rev. Cell. Dev. Biol. 15:551–578.

    Article  PubMed  Google Scholar 

  29. Wenger, R. H. 2002. Cellular adaptation to hypoxia: O2-sensing protein hydroxylases, hypoxia-inducible transcription factors, and O2-regulated gene expression. Faseb. J. 16:1151–1162.

    Article  PubMed  Google Scholar 

  30. Semenza, G. L. 2000. HIF-1 and human disease: One highly involved factor. Genes Dev. 14:1983–1991.

    PubMed  Google Scholar 

  31. Brune, B., and J. Zhou. 2003. The role of nitric oxide (NO) in stability regulation of hypoxia inducible factor-1alpha (HIF-1alpha). Curr. Med. Chem. 10:845–855.

    PubMed  Google Scholar 

  32. Dvorak, H. F., J. A. Nagy, D. Feng, L. F. Brown, and A. M. Dvorak. 1999. Vascular permeability factor/vascular endothelial growth factor and the significance of microvascular hyperpermeability in angiogenesis. Curr. Top Microbiol. Immunol. 237:97–132.

    PubMed  Google Scholar 

  33. Dvorak, H. F. 2003. Rous-Whipple Award Lecture. How tumors make bad blood vessels and stroma. Am. J. Pathol. 162:1747–1757.

    PubMed  Google Scholar 

  34. Veikkola, T., and K. Alitalo. 1999. VEGFs, receptors and angiogenesis. Semin. Cancer Biol. 9:211–220.

    Article  PubMed  Google Scholar 

  35. Miao, H. Q., P. Lee, H. Lin, S. Soker, and M. Klagsbrun. 2000. Neuropilin-1 expression by tumor cells promotes tumor angiogenesis and progression. Faseb. J. 14:2532–2539.

    Article  PubMed  Google Scholar 

  36. Pettersson, A., J. A. Nagy, L. F. Brown, C. Sundberg, E. Morgan, S. Jungles, R. Carter, J. E. Krieger, E. J. Manseau, V. S. Harvey, et al. 2000. Heterogeneity of the angiogenic response induced in different normal adult tissues by vascular permeability factor/vascular endothelial growth factor. Lab. Invest. 80:99–115.

    PubMed  Google Scholar 

  37. Dvorak, H. F., V. S. Harvey, P. Estrella, L. F. Brown, J. McDonagh, and A. M. Dvorak. 1987. Fibrin containing gels induce angiogenesis. Implications for tumor stroma generation and wound healing. Lab. Invest. 57:673–686.

    PubMed  Google Scholar 

  38. Barnes, P. J. 1995. Nitric oxide and airway disease. Ann. Med. 27:389–393.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veena B. Antony.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kilani, M.M., Mohammed, K.A., Nasreen, N. et al. RSV Causes HIF-1α Stabilization via NO Release in Primary Bronchial Epithelial Cells. Inflammation 28, 245–251 (2004). https://doi.org/10.1007/s10753-004-6047-y

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-004-6047-y

Key Words

Navigation