Skip to main content

Advertisement

Log in

Two-zone model for stream and river ecosystems

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

A mechanistic two-zone model is developed to represent the food web dynamics of stream and river ecosystems by considering the benthic and nonbenthic (or water-column) zones as two separate, but interacting biotopes. Flow processes, solar radiation, and temperature are the dynamic external environmental drivers. State variables are defined to represent the hierarchical levels of detritus, limiting nutrient, vegetation, and invertebrates. The fish trophic level is included as a constant input parameter. Model parameters, constants, and boundary conditions are defined based on watershed as well as channel hydrology, stream geomorphology, and biological activities. Recent advances in ecological science and engineering are used in representing important biogeochemical processes. In particular, the turbulent diffusion, as well as sloughing or detachment, processes are defined based on these recent advancements. The two-zone model was evaluated for a gravel bed prealpine Swiss stream named River Necker with data for the study period of January 1992 through December 1994. The model was able to capture the general trends and magnitudes of the food web state variables. A comprehensive relative sensitivity analysis with five moment-based measures found that approximately 5% of the model parameters were important in predicting benthic vegetation. Results of sensitivity analysis guided the model calibration. Simulated benthic vegetation with the calibrated model, which was obtained by adjusting only four parameters, corresponded with observed data. Hydrology-dependent sloughing and detachment were dominant in determining the response of benthic vegetation and invertebrates. The proposed two-zone food web model is a potentially useful research tool for stream and river ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdul-Aziz, O. I., 2008. Ecohydrology of unit river ecosystems: scaling and critical responses of stream health indicators to the environmental drivers. Ph. D. Thesis, Saint Anthony Falls Laboratory, Department of Civil Engineering, University of Minnesota, USA.

  • Abdul-Aziz, O. I., B. N. Wilson & J. S. Gulliver, 2008. Food web models for stream ecosystems. Proc., World Environmental & Water Resources Congress 2008, Honolulu, HI, May 12–16.

  • Allan, J. D., 2006. Stream Ecology: Structure and Function of Running Waters. Kluwer Academic Publishers, Norwell, MA, USA: 388 pp.

    Google Scholar 

  • Arhonditsis, G. B. & M. T. Brett, 2005. Eutrophication model for Lake Washington (USA) Part I. Model description and sensitivity analysis. Ecological Modelling 187: 140–178.

    Article  Google Scholar 

  • Biggs, B. J. F. & M. E. Close, 1989. Periphyton biomass dynamics in gravel bed rivers: the relative effect of flows and nutrients. Freshwater Biology 22: 209–231.

    Article  CAS  Google Scholar 

  • Biggs, B. J. F., V. I. Nikora & T. H. Snelder, 2005. Linking scales of flow variability to lotic ecosystem structure and function. River Research and Applications 21: 283–298.

    Article  Google Scholar 

  • Bogan, T., O. Mohseni & H. G. Stefan, 2003. Stream temperature-equilibrium temperature relationship. Water Resources Research 39: 1245.

    Article  Google Scholar 

  • Boulêtreau, S., F. Garabetian, S. Sauvage & J. M. Sanchez-Perez, 2006. Assessing the importance of a self-generated detachment process in river biofilm models. Freshwater Biology 51: 901–912.

    Article  Google Scholar 

  • Bras, R. L., 1989. Hydrology: An Introduction to Hydrologic Science. Addison-Wesley, NY, USA: 643 pp.

    Google Scholar 

  • Burns, N. M. & F. Rosa, 1980. In situ measurement of the settling velocity of organic carbon particles and 10 species of phytoplankton. Limnology and Oceanography 25: 855–864.

    Google Scholar 

  • Chapra, S. C., 1997. Surface Water-Quality Modeling. WCB/McGraw-Hill, New York, USA: 844 pp.

    Google Scholar 

  • Chow, V. T., 1959. Open-Channel Hydraulics. McGraw-Hill, New York, USA: 680 pp.

    Google Scholar 

  • Crawley, M. J., 1973. The numerical responses of insect predators to changes in prey density. Journal of Animal Ecology 44: 877–892.

    Google Scholar 

  • Cushing, D. H., 1959. On the nature of production in the sea. Fisheries Investment (London) Series II 18: 104 pp.

  • Cushing, D. H., 1968. Grazing by herbivorous copepods in the sea. Journal du Conseil International pour l’Exploration de la Mer 32: 70–82.

    Google Scholar 

  • DeAngelis, D. L., 1992. Dynamics of Nutrient Cycling and Food Webs. Chapman and Hall, New York, USA: 270 pp.

    Google Scholar 

  • Di Toro, D. M., 1978. Optic of turbid estuarine waters: approximations and applications. Water Research 12: 1059–1068.

    Article  Google Scholar 

  • Doveri, F., M. Scheffer, S. Rinaldi, S. Muratori & Y. Kuznetsov, 1993. Seasonality and chaos in plankton-fish model. Theoretical Population Biology 43: 159–183.

    Article  Google Scholar 

  • Einstein, H. A., 1950. The bed-load function for sediment transportation in open channel flows. Technical Bulletin No. 1026, U. S. Department of Agriculture Soil Conservation Service, Washington, DC: 78 pp.

  • Fisher, S. G., L. J. Gray, N. B. Grimm & D. E. Busch, 1982. Temporal succession in a desert stream ecosystem following flash flooding. Ecological Monographs 52: 93–110.

    Article  CAS  Google Scholar 

  • Gibbins, C., D. Vericat & R. J. Batalla, 2007a. When is stream invertebrate drift catastrophic? The role of hydraulics and sediment transport in initiating drift during flood events. Freshwater Biology 52: 2369–2384.

    Article  Google Scholar 

  • Gibbins, C., D. Vericat, R. J. Batalla & C. M. Gomez, 2007b. Shaking and moving: low rates of sediment transport trigger mass drift of stream invertebrates. Canadian Journal of Fisheries and Aquatic Sciences 64: 1–5.

    Article  Google Scholar 

  • Gilpin, M. E., 1979. Spiral chaos in a predator-prey model. American Naturalist 107: 306–308.

    Google Scholar 

  • Graham, J. M., M. T. Auer, R. P. Canale & J. P. Hoffmann, 1982. Ecological studies and mathematical modeling of Cladophera in Lake Huron: 4. Photosynthesis and respiration as functions of light and temperature. Journal of Great Lakes Research 8: 100–111.

    Article  CAS  Google Scholar 

  • Graham, J. M., J. A. Kranzfelder & M. T. Auer, 1985. Light and temperature as factors regulating seasonal growth in Ulothrix zonata (Ulvophyceae). Journal of Phycology 21: 228–234.

    Google Scholar 

  • Habersack, H. M., H. P. Nachtnebel & J. B. Laronne, 2001. The continuous measurement of bedload discharge in a large alpine gravel bed river. Journal of Hydraulic Research 39: 125–133.

    Article  Google Scholar 

  • Hamilton, D. P. & S. G. Schladow, 1997. Prediction of water quality in lakes and reservoirs. 1. Model description. Ecological Modelling 96: 91–110.

    Article  CAS  Google Scholar 

  • Hart, D. D. & C. M. Finelli, 1999. Physical-biological coupling in streams: the pervasive effects of flow on benthic organisms. Annual Review of Ecology and Systematics 30: 363–395.

    Article  Google Scholar 

  • Hastings, A., C. L. Hom, S. Ellner, P. Turchin & H. C. J. Godfray, 1993. Chaos in ecology: is mother nature a strange attractor? Annual Review of Ecology and Systematics 24: 1–33.

    Google Scholar 

  • Holling, C. S., 1959. Some characteristics of simple types of predation and parasitism. Canadian Entomologist 91: 385–398.

    Article  Google Scholar 

  • Hondzo, M. & H. Wang, 2002. Effects of turbulence on growth and metabolism of periphyton in a laboratory flume. Water Resources Research 38: 1277.

    Article  Google Scholar 

  • Horner, R. R. & E. B. Welch, 1981. Stream periphyton development in relation to current velocity and nutrients. Canadian Journal of Fisheries and Aquatic Sciences 38: 449–457.

    Article  Google Scholar 

  • Horner, R. R., E. B. Welch, M. R. Seeley & J. M. Jacoby, 1990. Response of periphyton to changes in current velocity, suspended sediment and phosphorus concentration. Freshwater Biology 24: 215–232.

    Article  Google Scholar 

  • Huisman, J. & B. Sommeijer, 2002. Maximal sustainable sinking velocity of phytoplankton. Marine Ecology Progress Series 244: 39–48.

    Article  Google Scholar 

  • Jorgensen, S. E., S. N. Nielsen & L. A. Jorgensen, 1991. Handbook of Ecological Parameters and Ecotoxicology. Elsevier, NY, USA: 1263 pp.

    Google Scholar 

  • Jowett, I. G., 2003. Hydraulic constraints on habitat suitability for benthic invertebrates in gravel-bed rivers. River Research and Applications 19: 495–507.

    Article  Google Scholar 

  • Kalff, J., 2003. Limnology. Prentice-Hall, New Jersey, USA: 592 pp.

    Google Scholar 

  • Lake, P. S., 2003. Ecological effects of perturbation by drought in flowing waters. Freshwater Biology 48: 1161–1172.

    Article  Google Scholar 

  • Leopold, L. B., M. G. Wolman & J. P. Miller, 1995. Fluvial Processes in Geomorphology. Dover Publications, New York, USA: 522 pp.

    Google Scholar 

  • Lightbody, A. & H. Nepf, 2006. Prediction of velocity profiles and longitudinal dispersion in emergent salt marsh vegetation. Limnology and Oceanography 51: 218–228.

    Article  Google Scholar 

  • Lin, J., L. Xie, L. J. Pietrafesa, H. Xu, W. Woods, M. A. Mallin & M. J. Durako, 2008. Water quality responses to simulated flow and nutrient reductions in the Cape Fear River Estuary and adjacent coastal region, North Carolina. Ecological Modelling 212: 200–217.

    Article  Google Scholar 

  • Malchow, H., 2000. Non-equilibrium spatio-temporal patterns in models of non-linear plankton dynamics. Freshwater Biology 45: 239–251.

    Article  Google Scholar 

  • Malchow, H., S. Petrovskii & A. Medvinsky, 2001. Pattern formation in models of plankton dynamics: a synthesis. Oceanologica Acta 24: 479–487.

    Article  Google Scholar 

  • Marks, J. C., M. E. Power & M. S. Parker, 2000. Flood disturbance, algal productivity, and interannual variation in food chain length. Oikos 90: 20–27.

    Article  Google Scholar 

  • May, R. M., 2001. Stability and Complexity in Model Ecosystems. Princeton University Press, New Jersey, USA: 265 pp.

    Google Scholar 

  • Momo, F. R., 1995. A new model for periphyton growth in running waters. Hydrobiologia 299: 215–218.

    Article  Google Scholar 

  • MPCA, 2008. Reconnaissance Procedures for Initial Visit to Stream Monitoring Sites. Minnesota Pollution Control Agency, Saint Paul, MN, USA [available on internet at http://www.pca.state.mn.us/water/biomonitoring/bio-streams-fish.html].

  • Mulholland, P. J., A. D. Steinman, A. V. Palumbo, D. L. DeAngelis & T. E. Flum, 1991. Influence of nutrients and grazing on the response of stream periphyton communities to a scour disturbance. Journal of the North American Benthological Society 10: 127–142.

    Article  Google Scholar 

  • Murphy, E., M. Ghisalberti & H. Nepf, 2007. Model and laboratory study of dispersion in flows with submerged vegetation. Water Resources Research 43: W05438.

    Article  Google Scholar 

  • Nepf, H., M. Ghisalberti, B. White & E. Murphy, 2007. Retention time and dispersion associated with submerged aquatic canopies. Water Resources Research 43: W04422.

    Article  Google Scholar 

  • Nikora, V. I., D. G. Goring & B. J. F. Biggs, 1998. A simple model of stream periphyton-flow interactions. Oikos 81: 607–611.

    Article  Google Scholar 

  • Patrick, R., 1974. Effects of abnormal temperatures on algal communities. In Gibbons, W. J. & R. R. Sharitz (eds), Thermal Ecology. U. S. Atomic Energy Commission, Washington, DC, USA: 335–370.

    Google Scholar 

  • Perry, S. A. & W. B. Perry, 1991. Organic carbon dynamics in two regulated rivers in northwestern Montana, USA. Hydrobiologia 218: 193–203.

    CAS  Google Scholar 

  • Pimm, S. L., 2002. Food Webs. The University of Chicago Press, Chicago, USA: 219 pp.

    Google Scholar 

  • Power, M. E. & W. E. Dietrich, 2002. Food webs in river networks. Ecological Research 17: 451–471.

    Article  Google Scholar 

  • Power, M. E., G. Parker, W. E. Dietrich & A. Sun, 1995. How does floodplain width affect river ecology? A preliminary exploration using simulations. Geomorphology 13: 301–317.

    Article  Google Scholar 

  • Quinn, J. M., G. L. Steele, C. W. Hickey & M. L. Vickers, 1994. Upper thermal tolerances of twelve New Zealand stream invertebrate species. New Zealand Journal of Marine and Freshwater Research 28: 391–397.

    Article  Google Scholar 

  • Rai, V. & R. Sreenivasan, 1993. Period-doubling bifurcations leading to chaos in a model food chain. Ecological Modelling 69: 63–77.

    Article  Google Scholar 

  • Reichert, P., 2001. River water quality model no. 1 (RWQM1): case study II. Oxygen and nitrogen conversion processes in the River Glatt (Switzerland). Water Science and Technology 43: 51–60.

    CAS  PubMed  Google Scholar 

  • Riley, G. A., 1956. Oceanography of long island sound 1952–1954. II. Physical Oceanography. Bulletin of the Bingham Oceanography Collection 15: 15–16.

    Google Scholar 

  • Robinson, C. T., U. Uehlinger & M. T. Monaghan, 2004. Stream ecosystem response to multiple experimental floods from a reservoir. River Research and Applications 20: 359–377.

    Article  Google Scholar 

  • Rodriguez, M. A., 1987. Estimating periphyton growth parameters using simple models. Limnology and Oceanography 32: 458–464.

    Article  CAS  Google Scholar 

  • Romanuk, T. N., L. J. Jackson, J. R. Post, E. McCauley & N. D. Martinez, 2006. The structure of food webs along river networks. Ecography 29: 3–10.

    Article  Google Scholar 

  • Rutherford, J. C., M. R. Scarsbrook & N. Broekhuizen, 2000. Grazer control of stream algae: modeling temperature and flood effects. Journal of Environmental Engineering 126: 331–339.

    Article  CAS  Google Scholar 

  • Saravia, L. A., F. Momo & L. D. B. Lissin, 1998. Modeling periphyton dynamics in running water. Ecological Modelling 114: 35–47.

    Article  Google Scholar 

  • Scheffer, M., S. Rinaldi & Y. A. Kuznetsov, 2000. Effects of fish on plankton dynamics: a theoretical analysis. Canadian Journal of Fisheries and Aquatic Sciences 57: 1208–1219.

    Article  Google Scholar 

  • Schladow, S. G. & D. P. Hamilton, 1997. Prediction of water quality in lakes and reservoirs. 2. Model calibration, sensitivity analysis and application. Ecological Modelling 96: 111–123.

    Article  CAS  Google Scholar 

  • Schuwirth, N., M. Kühni, S. Schweizer, U. Uehlinger & P. Reichert, 2008. A mechanistic model of benthos community dynamics in the River Sihl, Switzerland. Freshwater Biology 53: 1372–1392.

    Article  Google Scholar 

  • Son, D. H. & T. Fujino, 2003. Modeling approach to periphyton and nutrient interaction in a stream. Journal of Environmental Engineering 129: 834–843.

    Article  CAS  Google Scholar 

  • Spreafico, M. R., R. Weingartner & C. Leibundgut, 1992. Hydrological Atlas of Switzerland. Federal Office of Topography, Berne, Switzerland.

    Google Scholar 

  • Steele, J. H., 1965. Notes on some theoretical problems in production ecology. In Goldman, C. R. (ed.), Primary Production in Aquatic Environments. University of California Press, Berkeley, CA, USA: 393–398.

    Google Scholar 

  • Taylor, R. J., 1984. Predation. Chapman and Hall, New York, USA: 166 pp.

    Google Scholar 

  • Thomann, R. V. & J. A. Mueller, 1987. Principles of Surface Water Quality Modeling and Control. HarperCollins, New York, USA: 644 pp.

    Google Scholar 

  • Uehlinger, U. & M. W. Naegeli, 1998. Ecosystem metabolism, disturbance, and stability in a prealpine gravel bed river. Journal of North American Benthological Society 17: 165–178.

    Article  Google Scholar 

  • Uehlinger, U., H. Buehrer & P. Reichert, 1996. Periphyton dynamics in a floodprone prealpine river: evaluation of significant processes by modelling. Freshwater Biology 36: 249–263.

    Article  Google Scholar 

  • Vanoni, V. A., 2006. Sedimentation Engineering: Theory, Measurements, Modeling, and Practice. American Society of Civil Engineers (ASCE), Reston, Virginia, USA: 418 pp.

  • Warnaars, T. A., M. Hondzo & M. E. Power, 2007. Abiotic controls on periphyton accrual and metabolism in streams: scaling by dimensionless numbers. Water Resources Research 43: W08425.

    Article  Google Scholar 

  • White, W. A. & T. J. Day, 1982. Transport of graded gravel bed material. In Hey, R. D., J. C. Bathurst & C. R. Thorne (eds), Gravel-Bed Rivers. Wiley, New York, USA: 181–213.

    Google Scholar 

  • Wootton, J. T., M. S. Parker & M. E. Power, 1996. Effects of disturbance on river food webs. Science 273: 1558–1560.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research described in this article was funded by a doctoral dissertation fellowship from the University of Minnesota and a total maximum daily load grant from the United States Environmental Protection Agency. Evaluation data sets were collected from Urs Uehlinger of the Swiss Federal Institute of Environmental Sciences and Technology (EAWAG) and Pascal Burri of the Swiss Federal Office for the Environment. We express our extended gratitude to Urs Uehlinger for generously sharing his knowledge as well as valuable data sets of the Necker site with us. Important suggestions from Claudia Neuhauser and Raymond Newman from the University of Minnesota are gratefully acknowledged. Thanks to the anonymous reviewers for providing valuable critics and insightful comments, and to the Editor for a prudent handling of the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omar I. Abdul-Aziz.

Additional information

Handling editor: K. Martens

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 32 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdul-Aziz, O.I., Wilson, B.N. & Gulliver, J.S. Two-zone model for stream and river ecosystems. Hydrobiologia 638, 85–107 (2010). https://doi.org/10.1007/s10750-009-0011-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-009-0011-7

Keywords

Navigation