Skip to main content

Advertisement

Log in

The role of spatial and temporal descriptors for neotropical tadpole communities in southern Brazil

  • Primary research paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

We evaluated tadpole communities of temporary and permanent ponds, in order to understand how community richness varies monthly in a subtropical humid climate, to interpret the community structure in relation to biotic and abiotic environmental variables related to the temporary and permanent ponds. The study site was the Pró-Mata Research and Nature Conservation Center, a private reserve in southern Brazil. The climate is classified as Temperate Superhumid, with no dry season. We sampled three temporary and three permanent ponds. We compared the richness of tadpole assemblages of permanent and temporary ponds through individual-based rarefaction curves, and tested for possible differences using a MANOVA test. Tadpole richness was related to temporal environmental descriptors through General Regression Model. Relationships between the tadpole assemblages and possible predictors of their spatial variation were measured using a partial Canonical Correspondence Analysis. Analysis of rarefaction curves indicated higher expected richness for the temporary ponds. The mean values of richness were significantly different between the two hydroperiods across all months. Monthly richness showed the same tendency of variation for both pond types. Only temperature was related to tadpole richness. The pCCA analysis was significant. The most important predictors on the first pCCA axis were vegetation cover, conductivity, depth, and predator diversity. In this study, vegetation cover, conductivity, predator diversity, and water depth explained the spatial variation of tadpoles between ponds, with tadpole richness and diversity being higher in temporary than in permanent ponds. Our results suggest that different spatial-seasonal patterns operating in temporary and permanent ponds are related to maintaining the species diversity of pond-breeding anurans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alford, R. A., 1999. Ecology: resource use, competition and predation. In McDiarmid, R. W. & R. Altig (eds), Tadpoles: The Biology of Anuran Larvae. The University of Chicago Press, Chicago/London: 240–278.

    Google Scholar 

  • Anand, M. & L. Orlóci, 1996. Complexity in plant communities. Journal of Theoretical Biology 179: 179–186.

    Article  Google Scholar 

  • Azevedo-Ramos, C., W. E. Magnusson & P. Bayliss, 1999. Predation as the key factor structuring tadpole assemblages in a Savanna area in central Amazonia. Copeia 1999: 22–33.

    Article  Google Scholar 

  • Bertoletti, J. J. & M. B. Teixeira, 1995. Centro de Pesquisas e Conservação da Natureza Pró-Mata, termo de referência. Edipucrs, Porto Alegre.

    Google Scholar 

  • Borcard, D., P. Legendre & P. Drapeau, 1992. Partialling out the spatial component of ecological variation. Ecology 73: 1045–1055.

    Article  Google Scholar 

  • Both, C., I. L. Kaefer, T. G. Santos & S. Z. Cechin, 2008. An austral anuran assemblage in neotropics: a seasonal occurrence pattern correlated with photoperiod. Journal of Natural History 42: 205–222.

    Article  Google Scholar 

  • Canavero, A., M. Arim, D. E. Naya, A. Camargo, I. Rosa & R. Maneyro, 2008. Calling activity patterns in an anuran assemblage: the role of seasonal trends and weather determinants. North-Western Journal of Zoology 4: 29–41.

    Google Scholar 

  • Connell, J. H., 1978. Diversity in tropical rainforests and coral reefs. Science 199: 1302–1310.

    Article  PubMed  Google Scholar 

  • Duarte, L. S., R. E. Machado, S. M. Hartz & V. D. Pillar, 2006. What saplings can tell us about forest expansion over natural grasslands. Journal of Vegetation Science 17: 799–808.

    Article  Google Scholar 

  • Duellman, W. E. & L. Trueb, 1994. Biology of Amphibians. The Johns Hopkins University Press, London.

    Google Scholar 

  • Eason, G. W. Jr. & J. E. Fauth, 2001. Ecological correlates of anuran species richness in temporary pools: a field study in South Carolina, USA. Israel Journal of Zoology 47: 347–365.

    Article  Google Scholar 

  • Eterovick, P. C. & I. Sazima, 2000. Structure of an anuran community in a montane meadow in southeastern Brazil: effects of seasonality, habitat and predation. Amphibia-Reptilia 21: 439–461.

    Article  Google Scholar 

  • Goater, C. P., 1994. Growth and survival of postmetamorphic toads: interactions among larval history, density and parasitism. Ecology 75: 2264–2274.

    Article  Google Scholar 

  • Gotelli, N. J. & A. M. Ellison, 2004. A Primer of Ecological Statistics. Sinauer Associates, Sunderland.

    Google Scholar 

  • Gotelli, N. J. & G. L. Entsminger, 2007. EcoSim: Null models software for ecology (version 7). Acquired Intelligence Inc. & Kesey-Bear, Jericho. Free available on http://garyentsminger.com/ecosim.htm.

  • Gotthard, K., 2001. Growth strategies of ectothermic animals in temperate environments. In Atkinson, D. & M. Thornyke (eds), Environment and Animal Development. BIOS Scientific Publishers, Oxford: 287–304.

    Google Scholar 

  • Hero, J., W. E. Magnusson, C. F. D. Rocha & C. P. Caterall, 2001. Antipredator defences influence the distribution of amphibian prey species in the Central Amazon Rain Forest. Biotropica 33: 131–141.

    Google Scholar 

  • Heyer, W. R., 1969. The adaptive ecology of the species groups of the genus Leptodactylus (Amphibia, Leptodactylidae). Evolution 23: 421–428.

    Article  Google Scholar 

  • Heyer, W. R., R. W. McDiarmid & D. L. Weigmann, 1975. Tadpoles, predation and pond habitats in the tropics. Biotropica 7: 100–111.

    Article  Google Scholar 

  • Kats, L. B., J. W. Petranka & A. Sih, 1988. Antipredator defenses and the persistence of amphibian larvae with fishes. Ecology 69: 1865–1870.

    Article  Google Scholar 

  • Kiesecker, J., 1996. pH-mediated predator-prey interactions between Ambystoma tigrinum and Pseudacris triseriata. Ecological Applications 6: 1325–1331.

    Article  Google Scholar 

  • Kopp, K., M. Wachievski & P. C. Eterovick, 2006. Environmental complexity reduces tadpole predation by water bugs. Canadian Journal of Zoology 84: 136–140.

    Article  Google Scholar 

  • Krebs, C. J., 1999. Ecological Methodology. Addison Wesley Educational Publishers, Menlo Park, CA.

    Google Scholar 

  • Kwet, A., 1999. Pró-Mata—Anfíbios. Amphibien. Amphibians. Edipucrs, Porto Alegre.

    Google Scholar 

  • Kwet, A., 2001. Frösche im brasilianischen Araukarienwald—Anurengemeinschaft des Araukarienwaldes von Rio Grande do Sul: Diversität, Reproduktion und Ressourcenaufteilung. Natur und Tier-Verlag, Münster.

    Google Scholar 

  • Lawler, S. P. & P. J. Morin, 1993. Temporal overlap, competition, and priority effects in larval anurans. Ecology 74: 174–182.

    Article  Google Scholar 

  • Legendre, P. & L. Legendre, 1998. Numerical Ecology. Elsevier Scientific Publishing Company, Amsterdam.

    Google Scholar 

  • Magurran, A. E., 2004. Measuring Biological Diversity. Blackwell Publishing, Malden.

    Google Scholar 

  • Maluf, J. R. T., 2000. Nova classificação climática do Estado do Rio Grande do Sul. Revista Brasileira de Agrometeorologia 8: 141–150.

    Google Scholar 

  • Morin, P. J., 1983. Predation, competition, and the composition of larval anuran guilds. Ecological Monographs 53: 119–138.

    Article  Google Scholar 

  • Morin, P. J., 1987. Predation, breeding asynchrony, and the outcome of competition among treefrog tadpoles. Ecology 68: 675–683.

    Article  Google Scholar 

  • Oertli, B., D. A. Joye, E. Castella, R. Juge, D. Cambin & J. Lachavanne, 2002. Does size matter? The relationship between pond area and biodiversity. Biological Conservation 104: 59–70.

    Article  Google Scholar 

  • Oliveira, J. M. & V. D. Pillar, 2004. Vegetation dynamics on mosaics of Campos and Araucaria forest between 1974 and 1999 in Southern Brazil. Community Ecology 5: 197–202.

    Article  Google Scholar 

  • Palmer, M. W., 1993. Putting things in even better order—the advantages of canonical correspondence analysis. Ecology 74: 2215–2230.

    Article  Google Scholar 

  • Peltzer, P. M. & R. C. Lajmanovich, 2004. Anuran tadpole assemblages in riparian areas of the middle Paraná river, Argentina. Biodiversity and Conservation 13: 1833–1842.

    Article  Google Scholar 

  • Pillar, V. D., 2004. MULTIV: Multivariate exploratory analysis, randomization testing and bootstrap resampling, v. 2.3.17. Free available on http://ecoqua.ecologia.ufrgs.br.

  • Pillar, V. D. & L. Orlóci, 1996. On randomization testing in vegetation science: multifactor comparisons of relevé groups. Journal of Vegetation Science 7: 585–592.

    Article  Google Scholar 

  • Prado, C. P. A., M. Uetanabaro & C. F. B. Haddad, 2005. Breeding activity patterns, reproductive modes, and habitat use by anurans (Amphibia) in a seasonal environment in the Pantanal, Brazil. Amphibia-Reptilia 26: 211–221.

    Article  Google Scholar 

  • Richter-Boix, A. & G. A. Llorente, 2007. A comparative study of predator-induced phenotype in tadpoles across a pond permanence gradient. Hydrobiologia 583: 43–56.

    Article  Google Scholar 

  • Richter-Boix, A., G. A. Llorente & A. Montori, 2006. Breeding phenology of an amphibian community in a Mediterranean area. Amphibia-Reptilia 27: 549–559.

    Article  Google Scholar 

  • Rossa-Feres, D. C. & J. Jim, 1994. Distribuição sazonal em comunidades de anfíbios anuros na região de Botucatu, São Paulo. Revista Brasileira de Biologia 54: 323–334.

    Google Scholar 

  • Santos, T. G., D. C. Rossa-Feres & L. Casatti, 2007. Diversidade e distribuição espaço temporal de anuros em região com pronunciada estação seca no sudeste do Brasil. Iheringia Serie Zoologia 97: 37–49.

    Google Scholar 

  • Semlitsch, R. D., D. E. Scott, J. H. K. Pechmann & J. W. Gibbons, 1996. Structure and dynamics of an amphibian community: evidence from a 16-year study of a natural pond. In Cody, M. L. & J. Smallwood (eds), Long-Term Studies of Vertebrate Communities. Academic Press, Orlando: 217–248.

    Chapter  Google Scholar 

  • Skelly, D. K., E. E. Werner & S. A. Cortwright, 1999. Long-term distributional dynamics of a Michigan amphibian assemblage. Ecology 80: 2326–2337.

    Google Scholar 

  • Snodgrass, J. W., A. L. Bryan & J. Burger, 2000a. Development of expectations of larval amphibian assemblage structure in southeastern depression wetlands. Ecological Applications 10: 1219–1229.

    Article  Google Scholar 

  • Snodgrass, J. W., M. J. Komoroski, A. L. Bryan & J. Burger, 2000b. Relationships among isolated wetland size, hydroperiod, and amphibian species richness: implications for wetland regulations. Conservation Biology 14: 414–419.

    Article  Google Scholar 

  • Stenert, C. & L. Maltchik, 2007. Influence of area, altitude and hydroperiod on macroinvertebrate communities in southern Brazil wetlands. Marine and Freshwater Research 58: 993–1001.

    Article  Google Scholar 

  • ter Braak, C. J. F., 1986. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67: 1167–1179.

    Article  Google Scholar 

  • ter Braak, C. J. F. & P. Smilauer, 1998. CANOCO reference manual and user’s guide to Canoco for windows: software for canonical community ordination, version 4. Microcomputer Power, Ithaca, NY.

  • The R Foundation for Statistical Computing, 2005. R: A language and environment for statistical computing. Version 2.2.1., Vienna, Austria. Free available on http://www.R-project.org.

  • Titeux, N., M. Dufrêne, J. Jacob, M. Paquay & P. Defourny, 2004. Multivariate analysis of a fine-scale breeding bird atlas using a geographical information system and partial canonical correspondence analysis: environmental and spatial effects. Journal of Biogeography 31: 1841–1856.

    Article  Google Scholar 

  • Toft, C. A., 1985. Resource partitioning in amphibians and reptiles. Copeia 1985: 1–21.

    Article  Google Scholar 

  • van der Valk, A. G., 2006. Biology of habitats: the biology of freshwater wetlands. Oxford University Press, New York.

    Google Scholar 

  • Vasconcelos, T. S. & D. C. Rossa-Feres, 2005. Diversidade, distribuição espacial e temporal de anfíbios anuros (Amphibia, Anura) na região noroeste do Estado de São Paulo, Brasil. Biota Neotropica 5: BN0175022005. doi:10.1590/S1676-06032005000300010.

  • Wellborn, G. A., D. K. Skelly & E. E. Werner, 1996. Mechanisms creating community structure across a freshwater habitat gradient. Annual Review of Ecology and Systematics 27: 337–363.

    Article  Google Scholar 

  • Wilbur, H. M., 1980. Complex life cycles. Annual Review of Ecology and Systematics 11: 67–93.

    Article  Google Scholar 

  • Wilbur, H. M., 1987. Regulation of structure in complex systems: experimental temporary pond communities. Ecology 68: 143–1452.

    Article  Google Scholar 

  • Wilbur, H. M., 1997. Experimental ecology of food webs: complex systems in temporary ponds. Ecology 78: 2279–2302.

    Article  Google Scholar 

  • Wild, E. R., 1996. Natural history and resource use of four Amazonian tadpole assemblages. Occasional Papers of the Natural History Museum of the University of Kansas 176: 1–59.

  • Wiltshire, D. J. & C. M. Bull, 1977. Potential competitive interactions between larvae of Pseudophryne bibroni and P. semimarmorata (Anura: Leptodactylidae). Australian Journal of Zoology 25: 449–454.

    Article  Google Scholar 

  • Zar, J. H., 1999. Biostatistical Analysis. Prentice Hall, New Jersey.

    Google Scholar 

Download references

Acknowledgments

We are grateful to A. Awed, B. Madalozzo, F. Gonçalves, G. Winck, I. Kaefer, R. Lingnau, R. Santos, T. Cardoso, and T. Dalcin who collaborated in the field and/or laboratorial activities of this study. We also thank S. Hartz, the editor and three anonymous reviewers for their respective valuable suggestions on this article, and F. G. Becker for the fish identification. This study was granted by IBAMA-RAN (permit No 02010.002240/05-78), and counted with logistical support of CPCN Pró-Mata. CB was supported by a CNPQ/PIBIC fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Camila Both.

Additional information

Handling editor: B. Oertli

Rights and permissions

Reprints and permissions

About this article

Cite this article

Both, C., Solé, M., dos Santos, T.G. et al. The role of spatial and temporal descriptors for neotropical tadpole communities in southern Brazil. Hydrobiologia 624, 125–138 (2009). https://doi.org/10.1007/s10750-008-9685-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-008-9685-5

Keywords

Navigation