Skip to main content
Log in

Neurodegenerative Disorders: The Role of Genetic Factors in Their Origin and the Efficiency of Treatment

  • Reviews
  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

The review considers the main molecular physiological causes of neurodegenerative disorders. The genetic factors involved in Parkinson’s and Alzheimer’s diseases are conventionally divided into pharmacodynamic and pharmacokinetic. The former are analyzed at the levels of dopamine (DA) neurons and polymorphism of the D1, D2, and D3 DA receptors. The role of polymorphisms of some proteins such as parkin (PARK1-PARK10) and α-synuclein in generation of Lewy bodies is described. The pharmacokinetic factors play a role in Parkinson’s disease (PD) at the level of metabolism of DA, dioxyphenylalanine, and tyrosine and include polymorphisms of enzymes and proteins involved in the relevant metabolic reactions. The profile of DA metabolites may contribute to neurotoxicity and the development of PD. Prospects of drug therapy of PD and the risk of adverse drug effects such as mental disorders and dyskinesia are considered in terms of polymorphisms of enzymes and transport proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Pharmacogenomics: The Search for Individualized Therapies, Licinio, J. and Wong, M., Eds., Weinheim: Wiley-VCH, 2002.

    Google Scholar 

  2. Piruzyan, L.A., On Pharmacological Metrology, Izv. Akad. Nauk SSSR, Ser. Biol., 1990, no. 2, p. 302.

  3. Piruzyan, L.A., Sukhanov, V.A., and Saprin, A.N., Factor Predicting the Risk of Pathological Processes from Polymorphisms of Xenobiotic-Metabolizing Enzymes, Fiziol. Chel., 2000, vol. 26, no.2, p. 115.

    Google Scholar 

  4. Piruzyan, L.A., Sukhanov, V.A., Kalinina, E.V., and Saprin, A.N., Medicobiological Aspects of Metabolic Portraying, Dokl. Akad. Nauk, 2001, vol. 377, p. 129.

    Google Scholar 

  5. Piruzyan, L.A., Sukhanov, V.A., Kalinina, E.V., et al., Enzymatic System of Xenobiotic Metabolism and Detoxification As a Basis for Metabolic Portraying and Predicting the Risk of Pathological Processes, Izv. Akad. Nauk, Ser. Biol., 2002, no. 2, p. 149.

  6. Piruzyan, L.A. and Mikhailovskii, E.M., Metabolic “In Vivo Designing” of Tumors at the Levels of an Organism and Population under Conditions of Individual Genetic Predisposition: Communication I, Fiziol. Chel., 2001, vol. 27, no.3, p. 113.

    Google Scholar 

  7. Piruzyan, L.A. and Mikhailovskii, E.M., Metabolic “In Vivo Designing” of Tumors at the Levels of an Organism and Population under Conditions of Individual Genetic Predisposition: Communication II, Fiziol. Chel., 2002, vol. 28, no.1, p. 101.

    Google Scholar 

  8. Piruzyan, L.A. and Mikhailovskii, E.M., Metabolic “In Vivo Designing” of Tumors at the Levels of an Organism and Population under Conditions of Individual Genetic Predisposition: Communication III, Fiziol. Chel., 2002, vol. 28, no.5, p. 103.

    Google Scholar 

  9. Piruzyan, L.A. and Mikhailovskii, E.M., Metabolic “In Vivo Designing” of Tumors at the Levels of an Organism and Population under Conditions of Individual Genetic Predisposition: Communication IV, Fiziol. Chel., 2003, vol. 29, no.2, p. 118.

    Google Scholar 

  10. Piruzyan, L.A., Radkevich, L.A., and Morozova, N.V., Ethnic Metabolic Portraying in Selecting Drug Therapy with the Example of N-Acetylation and Chronic Diseases of the Liver, Dokl. Akad. Nauk, 2003, vol. 388, p. 842.

    Google Scholar 

  11. Jellinger, K.A., Cell Death Mechanisms in Neurodegeneration, J. Cell. Mol. Med., 2001, vol. 5, p. 1.

    PubMed  Google Scholar 

  12. Jellinger, K.A. and Bancher, C., Neuropathology of Alzheimer’s Disease: A Critical Update, J. Neural. Transm. (Suppl.), 1998, vol. 54, p. 77.

    Google Scholar 

  13. Jelinger, K.A., Neuropathology of Movement Disorders, Neurosurg. Clin. North. Am., 1998, vol. 9, p. 237.

    Google Scholar 

  14. McKeith, I.G., Galasko, D., Kosaka, K., et al., Consensus Guidelines for the Clinical and Pathological Diagnosis of Dementia with Lewy Bodies, Neurology, 1996, vol. 47, p. 1113.

    PubMed  Google Scholar 

  15. Julien, J.P. and Beaulieu, J.M., Cytoskeletal Abnormalities in Amyotrophic Lateral Sclerosis, J. Neurol. Sci., 2000, vol. 180, p. 7.

    Article  PubMed  Google Scholar 

  16. Saunders, C.D., Parkinson’s Disease: A New Hope, Boston: Harvard Health, 2000.

    Google Scholar 

  17. Kamenetskii, V.K., Parkinsonizm (Parkinsonism), St. Petersburg: Piter, 2001.

    Google Scholar 

  18. Kitamura, Y., Kakimura, J., and Taniguchi, T., Antiparkinsonian Drugs and Their Neuroprotective Effects, Biol. Pharm. Bull., 2002, vol. 25, p. 284.

    Article  PubMed  Google Scholar 

  19. Mel’nichuk, P.V. and Voevodskaya, I.V., Parkinsonizm. Istoriya, etiologiya i klinika (Parkinsonism: History, Etiology and Clinics), Moscow: Meditsina, 1974.

    Google Scholar 

  20. Golubev, V.L., Levin, Ya.I., and Vein, A.M., Bolezn’ Parkinsona i sindrom Parkinsona (Parkinson Disease and Parkinsonism), Moscow: Medpress, 2000.

    Google Scholar 

  21. Dekker, M.C., Bonifati, V., and van Duijn, C.M., Parkinson Disease: Piecing Together a Genetic Jigsaw, Brain, 2003, vol. 126, p. 1722.

    Article  PubMed  Google Scholar 

  22. Kurland, L.T., Kurtzke, J.F., and Goldberg, I.D., Epidemiology of Neurological and Sense Organ Disorders, Cambridge, 1973.

  23. Paddison, R. and Gnittith, R. Occurrence of Parkinson’s Disease in Black Patients at Charity Hospital in New Orleans, Neurology, 1974, vol. 24, p. 688.

    PubMed  Google Scholar 

  24. Jellinger, K., Pathology of Parkinson, Fahn, S., Ed., New York: Raven, 1986.

    Google Scholar 

  25. Lieberman, A.N. and Shupak, J.L., Levodopa and Melanoma, Neurology, 1974, vol. 31, p. 188.

    Google Scholar 

  26. De Jong, D., Parkinson Disease: Statistics, J. Neurosurg., 1966, vol. 24.suppl, p. 149.

    Google Scholar 

  27. Lu, A.Y., Drug-Metabolism Research Challenges in the New Millennium: Individual Variability in Drug Therapy and Drug Safety, Drug Metab. Dispos., 1998, vol. 26, p. 1217.

    PubMed  Google Scholar 

  28. Kitamura, Y., Kakimura, J., and Taniguchi, T., Antiparkinsonian Drugs and Their Neuroprotective Effects, Biol. Pharm. Bull., 2002, vol. 25, p. 284.

    Article  PubMed  Google Scholar 

  29. Stout, J.G., Zhou, Q., Wiedmer, T., and Sims, P.J., Glutamate Receptors and Calcium, Biochemistry, 1998, vol. 37, p. 14 860.

    Google Scholar 

  30. Polimeropoulos, M.H., Higgins, J.J., Golbe, L.I., et al., Mapping of a Gene for Parkinson’s Disease to Chromosome 4q21–q23, Science, 1996, vol. 274, p. 1197.

    Article  PubMed  Google Scholar 

  31. Clayton, D.F. and George, J.M., Synucleins in Synaptic Plasticity and Neurodegenerative Disorders, J. Neurosci. Res., 1999, vol. 58, p. 120.

    Article  PubMed  Google Scholar 

  32. Conway, D.F., Harper, J.M., and Lansbury, P.T., Accelerated In Vitro Fibril Formation by Mutant α-Synuclein Linked to Early-Onset Parkinson’s Disease, Nat. Med., 1998, vol. 4, p. 1318.

    Article  PubMed  Google Scholar 

  33. Lin, S.K., Lu, L.S., and Vingerhoets, B.J., Isolated Involvement of Substantia Nigra, Parkinsonism Relat. Disord., 1995, vol. 3, p. 67.

    Article  Google Scholar 

  34. Zarranz, J.J., Alegre, J., Gomez-Esteban, A., et al., The New Mutation, E46K, of α-Synuclein Causes Parkinson and Lewy Body Dementia, Ann. Neurol., 2004, vol. 55, p. 153.

    Article  PubMed  Google Scholar 

  35. Fornai, F., Lenzi, P., Gesi, M., et al., Resent Knowledge on Molecular Components of Lewy Bodies, Curr. Drug Target CNS Neurol. Disord., 2003, vol. 2, p. 149.

    Article  Google Scholar 

  36. Shastry, B., Neurodegenerative Disorders of Protein Aggregation, Neurochem. Internat., 2003, vol. 43, p. 1.

    Article  Google Scholar 

  37. Huynh, D.P., Scoles, D.R., Nguyen, D., and Pulst, S.M., The Autosomal Recessive Juvenile Parkinson Disease Gene Product, Parkin, Interacts with and Ubiquitinates Synaptotagmin XI, Hum. Mol. Genet., 2003, vol. 12, p. 2587.

    Article  PubMed  Google Scholar 

  38. Baptista, M.J., Cookson, M.R., and Miller, D.W., Parkin and α-Synuclein: Opponent Actions in the Pathogenesis of Parkinson Disease, Neuroscientist, 2004, vol. 10, p. 63.

    Article  PubMed  Google Scholar 

  39. Mori, H., Kond, O.T., Yokochi, M., et al., Pathologic and Biochemical Studies of Juvenile Parkinsonism Linked to Chromosome 6q, Neurology, 1998, vol. 51, p. 890.

    PubMed  Google Scholar 

  40. Satoh, J. and Kuroda, Y., Association of Codon 167 Ser/Asn Heterozigosity in the Parkin Gene with Sporadic Parkinson’s Disease, NeuroReport, 1999, vol. 10, p. 2735.

    PubMed  Google Scholar 

  41. Wang, M., Hattori, N., Matsumine, H., et al., Polymorphism in the Parkin Gene in Sporadic Parkinson’s Disease, Ann. Neurol., 1999, vol. 45, p. 655.

    Article  PubMed  Google Scholar 

  42. Lucking, C.B., Chesneau, V., Logmann, E., et al., Coding Polymorphisms in the Parkin Gene and Susceptibility to Parkinson Disease, Arch. Neurol., 2003, vol. 60, p. 1253.

    Article  PubMed  Google Scholar 

  43. Denison, S.R., Callahan, G., Becker, N.A., Characterization of FRA6E and Its Potential Role in Autosomal Recessive Juvenile Parkinsonism and Ovarian Cancer, Genes Chromosomes Cancer, 2003, vol. 38, p. 40.

    Article  PubMed  Google Scholar 

  44. Hedrich, K., Djarmati, A., Schafer, N., et al., DJ-1 (PARK7) Mutations Are Less Frequent Than Parkin (PARK2) Mutations in Early-Onset Parkinson Disease, Neurology, 2004, vol. 62, p. 389.

    PubMed  Google Scholar 

  45. Karamohamed, S., DeStefano, A.L., Wilk, J.B., et al., A Haplotype at the PARK3 Locus Influences Onset Age for Parkinson’s Disease, Neurology, 2003, vol. 61, p. 1557.

    PubMed  Google Scholar 

  46. Healy, D.G., Abou-Sleiman, P.M., and Valente, E.M., DJ-1 Mutations in Parkinson’s Disease, J. Neurol. Neurosurg. Psychiatry, 2004, vol. 75, p. 144.

    Article  PubMed  Google Scholar 

  47. Gorner, K., Holtorf, E., Odoy, S., et al., Differential Effects of Parkinson’s Disease-Associated Mutations on Stability and Folding of DJ-1, J. Biol. Chem., 2004, vol. 279, p. 6943.

    Article  PubMed  Google Scholar 

  48. Miller, D.W., Ahmad, R., Hague, S., et al., L166P Mutant DJ-1, Causative for Recessive Parkinson’s Disease, Is Degraded through the Ubiquitin-Proteasome System, J. Biol. Chem., 2003, vol. 278, p. 36 588.

    Google Scholar 

  49. Morris, C.M., O’Brien, K.K., Gibson, A.M., et al., Polymorphism in the Human DJ-1 Gene Is Not Associated with Sporadic Dementia with Lewy Bodies or Parkinson’s Disease, Neurosci. Lett., 2003, vol. 352, p. 151.

    Article  PubMed  Google Scholar 

  50. Bandopadhyay, R., Kihgsbury, A.E., Cookson, M.R., et al., The Expression of DJ-1 (PARK7) in Normal Human CNS and Idiopathic Parkinson’s Disease, Brain, 2004, vol. 127, p. 420.

    Article  PubMed  Google Scholar 

  51. Leroy, E., Boyer, R., Auburger, G., et al., The Ubiquitin Pathway in Parkinson’s Disease, Nature, 1998, vol. 395, p. 451.

    Article  PubMed  Google Scholar 

  52. Maraganore, D.M., Farrer, M.J., and Hardy, J.A., Case Control Study of the Ubiquitin Carboxy-Terminal Hydrolase L1 Gene in Parkinson’s Disease, Neurology, 1999, vol. 53, p. 1858.

    PubMed  Google Scholar 

  53. Maimone, D., Dominici, R., and Grimaldi, L., Pharmacogenomics of Neurodegenerative Diseases, Eur. J. Pharmacol., 2001, vol. 413, p. 11.

    Article  PubMed  Google Scholar 

  54. Cookson, M., Crystallizing Ideas about Parkinson’s Disease, Proc. Natl. Acad. Sci. USA, 2003, vol. 100, p. 9111.

    Article  PubMed  Google Scholar 

  55. Schulte, T., Bohringer, S., Schols, L., et al., Modulation of Disease Risk According to a Cathepsin D/Apolipoprotein E Genotype in PD, J. Neuronal. Transm., 2003, vol. 110, p. 749.

    Google Scholar 

  56. Zimprich, A., Muller-Myhsok, B., Farrer, M., et al., The PARK8 Locus in Autosomal Dominant Parkinsonism, Am. J. Hum. Genet., 2004, vol. 74, p. 11.

    Article  PubMed  Google Scholar 

  57. Hicks, A.A., Petursson, H., Jonsson, T., et al., A Susceptibility Gene for Late-Onset Idiopathic Parkinson’s Disease, Ann. Neurol., 2002, vol. 52, p. 549.

    Article  PubMed  Google Scholar 

  58. Wirdefeldt, K., Burgess, C.E., Westerberg, L., and Schalling, M., A Linkage Study of Candidate Loci in Familial Parkinson’s Disease, Am. J. Hum. Genet., 2003, vol. 69, p. 24.

    Google Scholar 

  59. Djarmati, A., Hedrich, K., Svetel, M., et al., Detection of Parkin (PARK2) and DJ1 (PARK7) Mutations in Early-Onset Parkinson Disease, Hum. Mutat., 2004, vol. 23, p. 525.

    Article  Google Scholar 

  60. Eerola, J., Hernandez, D., and Launes, J., Assessment of DJ1 (PARK7) Polymorphism in Finnish PD, Neurology, 2003, vol. 61, p. 1000.

    PubMed  Google Scholar 

  61. Oliveira, S.A., Scott, W.K., Nance, M.A., et al., Association Study of Parkin Gene Polymorphisms with Idiopathic Parkinson Disease, Arch. Neurol., 2003, vol. 60, p. 975.

    Article  PubMed  Google Scholar 

  62. Benbunan, B.R., Korczyn, A.D., and Giladi, N., Parkin Mutation-Associated Parkinsonism and Cognitive Decline, Comparison to Early-Onset Parkinson’s Disease, J. Neuronal. Transm., 2004, vol. 111, p. 47.

    Article  Google Scholar 

  63. West, A.B. and Maidment, N.T., Genetics of Parkin-Linked Disease, Hum. Genet., 2004, vol. 114, p. 327.

    Article  PubMed  Google Scholar 

  64. Carr, J., Fuente, M., Schulzer, E., et al., Familial and Sporadic Parkinson’s Disease Usually Display the Same Clinical Features, Parkinsonism Related Disord., 2003, vol. 9, p. 201.

    Article  Google Scholar 

  65. Lincoln, S.J., Maraganore, D.M., Lesnick, T.J., et al., Parkin Variants in North American Parkinson’s Disease: Cases and Controls, Mov. Disord., 2003, vol. 18, p. 1306.

    Article  PubMed  Google Scholar 

  66. Maher, N.E., Golbe, L.I., Lazzarini, A.M., et al., Epidemiologic Study of 203 Sibling Pairs with Parkinson’s Disease: The Gene PD Study, Neurology, 2002, vol. 58, p. 79.

    PubMed  Google Scholar 

  67. Berger, K., Breteler, M.M., Helmer, C., et al., Prognosis with Parkinson’s Disease in Europe, Neurology, 2000, vol. 54,suppl. 5, p. S24.

    PubMed  Google Scholar 

  68. Smargiassi, A., Mutti, A., De Rossa, A., et al., A Case-Cotrol Study of Occupational and Environmental Risk Factors for Parkinson’s Disease, Neurotoxicology, 1998, vol. 19, p. 709.

    PubMed  Google Scholar 

  69. Pigullo S., Di Maria E., Marchese R., et al., Essential Tremor Is Not Associated with Synuclein Gene Haplotypes, Mov. Disord., 2003, vol. 18, p. 823.

    Article  PubMed  Google Scholar 

  70. Goider-Khouja, N., Belal, S., Hamida, M.B., and Hentati, F., Clinical and Genetic Study of Familial Parkinson’s Disease in Tunisia, Neurology, 2000, vol. 54, p. 1603.

    Google Scholar 

  71. Behari, M., Strivastava, A.K., Das, R.R., and Pandey, R.M., Risk Factors of Parkinson’s Disease in Indian Patients, J. Neurol. Sci., 2001, vol. 190, p. 49.

    Article  PubMed  Google Scholar 

  72. Kruger, R., Fischer, C., Schulte, T., et al., Mutation Analysis of the Neurofilament M Gene in Parkinson’s Disease, Neurosci. Lett., 2003, vol. 351, p. 125.

    Article  PubMed  Google Scholar 

  73. Beal, M.F., Bioenergetic Approaches for Neuroprotection in Parkinson’s Disease, Ann. Neurol., 2003, vol. 53,suppl. 3, p. S39.

    Article  PubMed  Google Scholar 

  74. Ebadi, M. and Sharma, S.K., Peroxynitrite and Mitochondrial Dysfunction in the Pathogenesis of Parkinson’s Disease, Antioxid. Redox Signal., 2003, vol. 5, p. 319.

    Article  PubMed  Google Scholar 

  75. Mellick, G.D., Silburn, P.A., Prince, J.A., and Brookes, A.J., A Novel Screen for Nuclear Mitochondrial Gene Associations with Parkinson’s Disease, J. Neuronal. Transm., 2004, vol. 111, p. 191.

    Article  Google Scholar 

  76. Dekker, M.C., Giesbergen, P.C., Njajou, O.T., et al., Mutations in the Hemochromatosis gene (HFE), Parkinson’s Disease and Parkinsonism, Neurosci. Lett., 2003, vol. 348, p. 117.

    Article  PubMed  Google Scholar 

  77. Felletschin, B., Bauer, P., Walter, U., et al., Screening for Mutations of the Ferritin Light and Heavy Genes in Parkinson’s Disease with Hyperechogenicity of the Substantia Nigra, Neurosci. Lett., 2003, vol. 352, p. 53.

    Article  PubMed  Google Scholar 

  78. Froelich, S., Axelman, P., Almkvist, A., et al., Extended Investigation of τ and Mutation Screening of Other Candidate Genes on Chromosome 17q21 in Swedish FTDP-17 Family, Am. J. Med. Genet. B, 2003, vol. 121, p. 112.

    Article  Google Scholar 

  79. Clark, L.N., Levy, G., Tang, M.X., et al., The Saitohin ‘Q7R’ Polymorphism and τ Haplotype in Multi-Ethnic Alzheimer Disease and Parkinson’s Disease Cohort, Neurosci. Lett., 2003, vol. 347, p. 17.

    Article  PubMed  Google Scholar 

  80. Wu, Y.R., Wang, C.K., Chen, C.M., et al., Analysis of Heat-Shock Protein 70 Gene Polymorphisms and the Risk of Parkinson’s Disease, Hum. Genet., 2004, vol. 114, p. 236.

    Article  PubMed  Google Scholar 

  81. Carminee, A., Buervenich, S., Galter, D., et al., NUUR1 Promoter Polymorphisms: Parkinson’s Disease, Schizophrenia, and Personality Traits, Am. J. Med. Genet. B, 2003, vol. 120, p. 51.

    Article  Google Scholar 

  82. Van Der Walt, D., Noureddine, M.A., Kittappa, R., et al., Fibroblast Growth Factor 20 Polymorphisms and Haplotypes Strongly Influence Risk of Parkinson Disease, Am. J. Hum. Genet., 2004, vol. 74, p. 1121.

    Article  PubMed  Google Scholar 

  83. Lwin, A., Orvisky, E., Goker-Alpan, O., et al., Glucocerebrosidase Mutations in Subjects with Parkinsonism, Mol. Genet. Metab., 2004, vol. 81, p. 70.

    Article  PubMed  Google Scholar 

  84. Smith, P., Crocker, S., Jackson, V., and Park, D., Cyclin-Cependent Kinase 5 Is a Mediator of Dopaminergic Neuron Loss, Proc. Natl. Acad. Sci. USA, 2003, vol. 100, p. 13 650.

    Google Scholar 

  85. Wang, J., Si, J.M., Liu, Z.L., and Yu, L., Cholecystokinin, A and B-Receptor Gene Polymorphisms in Parkinson’s Disease, Pharmacogenetics, 2003, vol. 13, p. 365.

    Article  PubMed  Google Scholar 

  86. Bresman, S.B., Dystonia: Phenotypes and Genotypes, Rev. Neurol., 2003, vol. 159, p. 849.

    PubMed  Google Scholar 

  87. Kabakci, K., Hedrich, K., Leung, J.C., et al., Mutations in DYT1: Extension of the Phenotypic and Mutational Spectrum, Neurology, 2004, vol. 62, p. 395.

    PubMed  Google Scholar 

  88. Tan, L.C., Tanner, C.M., Chen, R., et al., Marked Variation in Clinical Presentation and Age of Onset in Family with a Heterozygous Parkin Mutation, Mov. Disord., 2003, vol. 18, p. 758.

    Article  PubMed  Google Scholar 

  89. Lampe, J.B., Gossrau, G., Herting, B., et al., HLA Typing and Parkinson Disease, Eur. Neurol., 2003, vol. 50, p. 64.

    Article  PubMed  Google Scholar 

  90. Czlonkowska, A., Kurkowska, I., Czlonkowski, A., et al., Immune Processes in the Pathogenesis of Parkinson’s Disease—A Potential Role for Microglia and Nitric Oxide, Med. Sci. Monit., 2002, vol. 8, p. 165.

    Google Scholar 

  91. Imamura, K., Hishikawa, N., Sawada, M., et al., Distribution of Major Histocompatibility Complex Class II-Positive Microglia, Acta Neuropathol., 2003, vol. 106, p. 518.

    Article  PubMed  Google Scholar 

  92. Daveu, C., Servy, C., Dendane, M., et al., Oxidation and Nitration of Catecholamines by Nitrogen Oxides Derived from Nitric Oxide, Nitric Oxide, 1997, vol. 3, p. 234.

    Article  Google Scholar 

  93. Foppoli, C., Coccia, R., Cini, C., and Rosei, M., Catecholamines Oxidation by Xanthine Oxidase, Biochim. Biophys. Acta, 1997, vol. 1334, p. 200.

    PubMed  Google Scholar 

  94. Graham, D.G., Oxidative Pathways for Catecholamines in the Genesis of Neuromelanin and Cytotoxic Quinones, Mol. Pharmacol., 1978, vol. 14, p. 633.

    PubMed  Google Scholar 

  95. Hastings, T.G., Enzymatic Oxidation of Dopamine, J. Neurochem., 1995, vol. 64, p. 919.

    PubMed  Google Scholar 

  96. Hawley, M.D., Tatawawadi, S.V., and Piekarsky, S., Electrochemical Studies of the Oxidation Pathways of Cathecholamines, J. Am. Chem. Soc., 1967, vol. 89, p. 447.

    Article  PubMed  Google Scholar 

  97. Kostrzewa, R.M. and Segura-Aguilar, J., Neurotoxicological and Neuroprotective Elements in Parkinson’s Disease, Neurotox. Res., 2002, vol. 4, p. 83.

    Article  PubMed  Google Scholar 

  98. Segura-Aguilar, J., Peroxidase Activity of Liver Microsomal Vitamin D 25 Hydroxylase Catalyzes 25-Hydroxylation of Vitamine D3 and Oxidation of Dopamine to Aminochrome, Biochem. Mol. Med., 1996, vol. 58, p. 122.

    Article  PubMed  Google Scholar 

  99. Segura-Aguilar, J. and Lind, C., On the Mechanism of the Mn3+-Induced Neurotoxicity of Dopamine, Chem. Biol. Interact., 1989, vol. 72, p. 309.

    Article  PubMed  Google Scholar 

  100. Teriand, O., Flatmark, T., Tangeras, A., and Gronberg, M., Dopamine Oxidation Generates an Oxidative Stress Mediated by Dopamine Semiquinone and Unrelated to Reactive Oxygen Species, J. Mol. Cell Cardiol., 1997, vol. 29, p. 1731.

    Article  PubMed  Google Scholar 

  101. Shen, X.M., Xia, B., Wrona, M.Z., and Dryhurst, G., Synthesis, Redox Properties, In Vivo Formation, and Neurobehavioral Effects of N-Acetylcysteinyl Conjugates of Dopamines, Chem. Res. Toxicol., 1996, vol. 9, p. 1117.

    Article  PubMed  Google Scholar 

  102. Healy, D.G., Abou-Sleiman, P.M., Ozawa, T., et al., A Functional Polymorphism Regulating Dopamine β-Hydroxylase Influences against Parkinson’s Disease, Ann. Neurol., 2004, vol. 55, p. 443.

    Article  PubMed  Google Scholar 

  103. Tan, E.K., Chai, A., Lum, S.Y., et al., Monoamine Oxidase B Polymorphism, Am. J. Med. Genet. B, 2003, vol. 120, p. 58.

    Article  Google Scholar 

  104. McLeod, H.L., Syvanen, A.C., Githang, J., et al., Ethnic Differences in Catechol O-Methyltransferase Pharmacogenetics, Pharmacogenetics. 1998, vol. 8, p. 195.

    PubMed  Google Scholar 

  105. Hoda, F., Nicholl, D., Bennett, P., et al., No Association between Parkinson Disease and Low-Activity Alleles of COMT, Biochem. Biophys. Res. Commun., 1996, vol. 228, p. 780.

    Article  PubMed  Google Scholar 

  106. Syvanen, A.C., Tilgman, C., Rinne, G., et al., Genetic Polymorphism of COMT, Pharmacogenetics, 1997, vol. 7, p. 65.

    PubMed  Google Scholar 

  107. Xie, T., Ho, S.L., Li, L.S., and Mao, O.C., G/A1947 Polymorphism in COMT Gene in Parkinson’s Disease, Mov. Disord., 1997, vol. 12, p. 426.

    Article  PubMed  Google Scholar 

  108. Yoritaka, A., Hattori, N., Yoshino, H., and Mizuno, Y., COMT Genotype and Susceptibility to Parkinson’s Disease in Japan, J. Neuronal. Transm., 1997, vol. 104, p. 1313.

    Article  Google Scholar 

  109. Wu, R.M., Cheng, S.W., Chen, K.H., et al., The COMT L Allele Modifies the Association between MAOB Polymorphism and PD in Taiwanese, Neurology, 2001, vol. 56, p. 375.

    PubMed  Google Scholar 

  110. Watanabe, M., Harada, S., Nakamura, T., et al., Association between COMT Gene Polymorphisms and Dyskinesia in Parkinson’s Disease, Neuropsychobiology, 2003, vol. 48, p. 190.

    Article  PubMed  Google Scholar 

  111. Li, Y.J., Oliveira, S.A., Xu, P., et al., Glutathione S-Transferase ω-1 Modifies Age-at-Onset of Alzheimer Disease and Parkinson Disease, Hum. Mol. Genet., 2003, vol. 12, p. 3259.

    Article  PubMed  Google Scholar 

  112. Harhangi, B.S., Oostra, B.A., Heutink, P., et al., NAT-2 Polymorphism in Parkinson’s Disease, J. Neurol. Neurosurg. Psychiatry, 1999, vol. 67, p. 518.

    PubMed  Google Scholar 

  113. Kaiser, R., Hofer, A., Grapengiesser, A., et al., L-Dopa-Induced Adverse Effects in PD and Dopamine Transporter Gene Polymorphism, Neurology, 2003, vol. 60, p. 1750.

    PubMed  Google Scholar 

  114. Makoff, A.J., Graham, J.M., Arranz, M.J., et al., Association Study of Dopamine Receptor Gene Polymorphisms with Drug-Induced Hallucinations in Patients with Idiopathic Parkinson’s Disease, Pharmacogenetics, 2000, vol. 10, p. 43.

    Article  PubMed  Google Scholar 

  115. Wang, J., Zhao, C., Chen, B., and Liu, Z.L., Polymorphisms of Dopamine Receptor and Transporter Gene Hallucinations in Parkinson’s Disease, Neurosci. Lett., 2004, vol. 355, p. 193.

    Article  PubMed  Google Scholar 

  116. Oliveri, R.L., Annesi, G., Zappia, M., et al., Dopamine D2 Receptor Gene Polymorphism and the Risk of Levodopa-Induced Dyskinesias in PD, Neurology, 1999, vol. 53, p. 1425.

    PubMed  Google Scholar 

  117. Nakasoa, K., Yasuia, K., Kowaa, H., et al., Hypertrophy of IMC of Carotid Artery in Parkinson’s Disease Is Associated with L-DOPA, Homocysteine, and MTHFR Genotype, J. Neurol. Sci., 2003, vol. 207, p. 19.

    Article  PubMed  Google Scholar 

  118. Youdim, M.B. and Weinstock, M., Molecular Basis of Neuroprotective Activities of Rasagiline and the Anti-Alzheimer Drug, Cell Mol. Neurobiol., 2001, vol. 21, p. 555.

    Article  PubMed  Google Scholar 

  119. Mori, S., Responses to Donepezil in Alzheimer’s Disease and Parkinson’s Disease, Ann. N. Y. Acad. Sci., 2002, vol. 977, p. 493.

    PubMed  Google Scholar 

  120. Saporito, M.S., Hudkins, R.L., and Maroney, A.C., Discovery of CEP-1347/KT-7515, an Inhibitor of the JNK/SAPK Pathway for the Treatment of Neurodegenerative Diseases, Prog. Med. Chem., 2002, vol. 40, p. 23.

    PubMed  Google Scholar 

  121. Pisani, A., Bonsi, P., Centonze, D., et al., Targeting Striatal Cholinergic Interneurons in Parkinson’s Disease, Neuropharmacology, 2003, vol. 45, p. 45.

    Article  PubMed  Google Scholar 

  122. Storch, A., Hwang, Y.I., Gearhart, D.A., and Beach, J.W., Dopamine Transporter-Mediated Cytotoxicity of β-Carbolinium Derivatives Related to Parkinson’s Disease: Relationship to Transporter-Dependent Uptake, J. Neurochem. 2004, vol. 89, p. 685.

    PubMed  Google Scholar 

  123. Jost, W.H. and Bruck, C., Drug Interactions in the Treatment of Parkinson’s Disease, J. Neurol., 2002, vol. 249,suppl. 3, p. III/24.

    Article  Google Scholar 

  124. Muller, T., Drug Treatment of Non-Motor Symptoms in Parkinson’s Disease, Expert Opin. Pharmacother., 2002, vol. 3, p. 381.

    Article  PubMed  Google Scholar 

  125. Gimenez-Roldan, S., Navarro, E., and Mateo, D., Effects of Quetiapine at Low Doses on Psyhosis, Motor Disability and Stress of the Caregiver in Patients with Parkinson’s Disease, Rev. Neurol., 2003, vol. 36, p. 401.

    PubMed  Google Scholar 

  126. Tariot, P.N. and Ismail, M.S., Use of Quetiapine in Elderly Patients, J. Clin. Psychiatry, 2002, vol. 63,suppl. 13, p. 21.

    Google Scholar 

  127. Elbaz, A., Levecque, C., Clavel, J., et al., CYP2D6 Polymorphism, Pesticide Exposure, and Parkinson’s Disease, Ann. Neurol., 2004, vol. 55, p. 430.

    Article  PubMed  Google Scholar 

  128. Persad, A.S., Stedeford, T., Tanaka, S., et al., Parkinson’s Disease and CYP2D6 Polymorphism in Asian Populations, Neuroepidemiology, 2003, vol. 22, p. 357.

    Article  PubMed  Google Scholar 

  129. Weisgraber, K.H. and Mahley, R.W., Human Apolipoprotein E: The Alzheimer’s Disease Connection, FASEB J., 1996, vol. 10, p. 1485.

    PubMed  Google Scholar 

  130. Mahley, R.W., Apolipoprotein E: Cholesterol Transport Protein with Expanding Role in Cell Biology, Science, 1988, vol. 240, p. 622.

    PubMed  Google Scholar 

  131. Kitagawa, K., Matsumoto, M., Hori, M., and Yanagihara, T., Neuroprotective Effect of Apolipoprotein E against Ischemia, Ann. N. Y. Acad. Sci., 2002, vol. 977, p. 468.

    PubMed  Google Scholar 

  132. Siest, G., Bertrand, P., Herbeth, B., et al., Apolipoprotein E Polymorphisms and Concentration in Chronic Diseases and Drug Responses, Clin. Chem. Lab. Med., 2000, vol. 38, p. 841.

    Article  PubMed  Google Scholar 

  133. Ohm, T.G., Hamker, U., Cedazo-Minguez, A., et al., Apolipoprotein E and β-A4 Amyloid: Signals and Effects, Biochem. Soc. Symp., 2001, vol. 67, p. 121.

    PubMed  Google Scholar 

  134. Reiman, E.M., Caselli, R.J., Yun, L.S., et al., Preclinical Evidence of Alzheimer’s Disease in Persons Homozygous for the ε4 Allele for Apolipoprotein E, N. Engl. J. Med. 1996, vol. 334, p. 752.

    Article  PubMed  Google Scholar 

  135. Reiman, E.M., Caselli, R.J., Chen, K., et al., Declining Brain Activity in Cognitively Normal Apolipoprotein E ε4 Heterozygotes: A Foundation for Using Positron Emission Tomography Efficiently Test Treatments to Prevent Alzheimer’s Disease, Proc. Soc. Natl. Acad. Sci. USA, 2001, vol. 98, p. 3334.

    Article  Google Scholar 

  136. Corder, E.H., Saunders, A.M., Pericak-Vance, M.A., and Roses, A.D., There Is a Pathologic Relationship between ApoE-ε4 and Alzheimer’s Disease, Arch. Neurol., 1995, vol. 52, p. 650.

    PubMed  Google Scholar 

  137. Saunders, A.M., Strittmatter, W.J., Schmechel, D., et al., Association of Apolipoprotein E Allele ε4 with Late-Onset Familial and Sporadic Alzheimer’s Disease, Neurology, 1993, vol. 43, p. 1467.

    PubMed  Google Scholar 

  138. Poirier, J., Delisle, M.C., Quirion, R., et al., Apolipoprotein E4 Allele As a Predictor of Cholinergic Deficits and Treatment Outcome in Alzheimer Disease, Proc. Natl. Acad. Sci. USA, 1995, vol. 92, p. 12 260.

    Google Scholar 

  139. Farlow, M.R., Lahiri, D.K., Poirier, J., et al., Treatment Outcome of Tacrine Therapy Depends on Apolipoprotein Genotype and Gender of the Subjects with Alzheimer’s Disease, Neurology, 1998, vol. 50, p. 669.

    PubMed  Google Scholar 

  140. Yaffe, K., Haan, M., and Byers, A., Estrogen Use, APOE, and Cognitive Decline: Evidence of Gene-Environment Interaction, Neurology, 2000, vol. 54, p. 1949.

    PubMed  Google Scholar 

  141. Schneider, L.S. and Farlow, M., Combined Tacrine and Estrogen Replacement Therapy in Patients with Alzheimer’s Disease, Ann. N. Y. Acad. Sci., 1997, vol. 826, p. 317.

    PubMed  Google Scholar 

  142. Poirier, J., Apolipoprotein E4, Cholinergic Integrity and the Pharmacogenetics of Alzheimer’s Disease, J. Psychiatry Neurosci., 1999, vol. 24, p. 147.

    PubMed  Google Scholar 

  143. Pomara, N., Tun, H., Deptula, D., and Greenblatt, D.J., ApoE ε4 Allele and Susceptibility to Drug-Induced Memory Impairment in the Elderly, J. Clin. Psychopharmacol., 1998, vol. 18, p. 179.

    Article  PubMed  Google Scholar 

  144. Simon, T., Becquemont, L., Mary-Krause, M., et al., Combined Glutathione S-Transferase M1 and T1 Genetic Polymorphism and Tacrine Hepatotoxicity, Clin. Pharmacol. Ther., 2000, vol. 67, p. 432.

    Article  PubMed  Google Scholar 

  145. Schulz, J.B., Lindenau, J., Seyfried, J., and Dichgans, J., Glutathione, Oxidative Stress and Neurodegeneration, Eur. J. Biochem., 2000, vol. 267, p. 4904.

    Article  PubMed  Google Scholar 

  146. Nunomura, A., Perry, G., Aliev, G., et al., Oxidative Damage Is the Earliest Event in Alzheimer Disease, J. Neuropathol. Exp. Neurol., 2001, vol. 60, p. 759.

    PubMed  Google Scholar 

  147. Piruzyan, L.A. and Piruzyan, A.L., Electron Paramagnetic Flow Dialysis (A Possible Use in Experimental Biology and Medicine), Dokl. Akad. Nauk, 2004, no. 2, p. 277.

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fiziologiya Cheloveka, Vol. 31, No. 4, 2005, pp. 119–130.

Original Russian Text Copyright © 2005 by Sukhanov, Ionov, Piruzyan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sukhanov, V.A., Ionov, I.D. & Piruzyan, L.A. Neurodegenerative Disorders: The Role of Genetic Factors in Their Origin and the Efficiency of Treatment. Hum Physiol 31, 472–482 (2005). https://doi.org/10.1007/s10747-005-0080-6

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10747-005-0080-6

Keywords

Navigation