Skip to main content

Advertisement

Log in

Dilated cardiomyopathy update: infectious-immune theory revisited

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Dilated cardiomyopathy is characterized by dilatation of the left or right ventricle, or both ventricles. The degree of myocardial dysfunction is not attributable to abnormal loading conditions. The infectious-immune theory has long been hypothesized to explain the pathogenesis of many etiologically unrecognized dilated cardiomyopathies. Inflammations followed by immune reactions, which may be excessive, in the myocardium, evoked by external triggers such as viral infections and/or autoimmune antibodies, continue insidiously, and lead to the process of cardiac remodeling with ventricular dilatation and systolic dysfunction. This ultimately results in dilated cardiomyopathy. Hepatitis C virus-associated heart diseases are good examples of cardiac lesions definitely induced by viral infections in humans that progress to a chronic stage through complicated immune mechanisms. Therapeutic strategies for myocarditis and dilated cardiomyopathy have been obtained through analyses of the acute, subacute, and chronic phases of experimental viral myocarditis in mice. The appropriate modulation of excessive immune reactions during myocarditis, rather than their complete elimination, appears to be a key option in the prevention and treatment of dilated cardiomyopathy. The clinical application of an NF-κB decoy and immune adsorption of IgG3 cardiac autoantibodies have been used as immunomodulating therapies and may provide novel approaches for the treatment of refractory patients with dilated cardiomyopathy. Conventional therapeutic agents for chronic heart failure such as β-blockers, angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, and aldosterone antagonists in particular should be re-evaluated on the basis of their anti-inflammatory properties in the treatment of dilated cardiomyopathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Kawai C (1971) Idiopathic cardiomyopathy. A study of the infectious-immune theory as a cause of the disease. Jpn Circ J 35:765–770. ISSN:00471828

    Google Scholar 

  2. Kawai C (1999) From myocarditis to cardiomyopathy: mechanisms of inflammation and cell death. Learning from the past for the future. Circulation 99:1091–1100. doi:10.1161/01.CIR.99.8.1091

    Article  PubMed  CAS  Google Scholar 

  3. Cohen J (1999) The scientific challenge of hepatitis C. Science 285:26–30. doi:10.1126/science.285.5424.26

    Article  PubMed  CAS  Google Scholar 

  4. Alter MJ, Kruszon-Moran D, Nainan OV, McQuillan GM, Gao F, Moyer LA, Kaslow RA, Margolis HS (1999) The prevalence of hepatitis C virus infection in the United States, 1998 through 1994. N Eng J Med 341:556–562. doi:10.1056/NEJM199908193410802

    Article  CAS  Google Scholar 

  5. Crabb C (2001) Infectious diseases. Hard-won advances spark excitement about hepatitis C. Science 294:506–507. doi:10.1126/science.294.5542.506

    Article  PubMed  CAS  Google Scholar 

  6. Matsumori A, Matoba Y, Sasayama S (1995) Dilated cardiomyopathy associated with hepatitis C virus infection. Circulation 92:2519–2525. doi:10.1161/01.CIR.92.9.2519

    Article  PubMed  CAS  Google Scholar 

  7. Matsumori A (2005) Hepatitis C virus infection and cardiomyopathies. Circ Res 96:144–147. doi:10.1161/01.RES.0000156077.54903.67

    Article  PubMed  CAS  Google Scholar 

  8. Matsumori A, Shimada T, Chapman NM, Tracy SM, Mason JW (2006) Myocarditis and heart failure associated with hepatitis C virus infection. J Cardiac Fail 12:293–298

    Article  Google Scholar 

  9. Wang L, Geng J, Li J, Li T, Matsumori A, Chang Y, Lu F, Zhuang H (2011) The biomarker N-terminal pro-brain natriuretic peptide and liver diseases. Clin Invest Med 34(1):E30–E37

    PubMed  CAS  Google Scholar 

  10. Matsumori A (2009) Global alert and response network for hepatitis C virus-derived heart diseases: a call to action. CVD Prev Control 4:109–118. doi:10.1016/j.cvdpc.2009.02.002

    Article  Google Scholar 

  11. Hui JM, Sud A, Farrell GC, Bandara P, Byth K, Kench JG, McCaughan G, George J (2003) Insulin resistance is associated with chronic hepatitis C virus infection and fibrosis progression. Gastroenterology 125:1695–1704. doi:10.1053/j.gastro.2003.08.032

    Article  PubMed  CAS  Google Scholar 

  12. Saleh A, Matsumori A, Negm H, Fouad H, Onsy A, Shalaby M (2011) Assessment of cardiac involvement of hepatitis C virus; tissue Doppler imaging and NTproBNP study. J Saudi Heart Assoc 23(4):217–223. doi:10.1016/j.jsha.2011.04.005

    Article  PubMed  Google Scholar 

  13. Matumori A, Shimada M, Obata T (2010) Leukocytes are the major target of hepatitis C virus infection: possible mechanism of multiorgan involvement including the heart. CVD Prev Control 5:51–58. doi:10.1016/jcvdpc.2010.04.005

    Article  Google Scholar 

  14. Freeman GJ, Freeman AS, Segil JM, Lee G, Whitman JF, Nadler LM (1989) B7, a new member of the Ig superfamily with unique expression on activated and neoplastic B cells. J Immunol 143:2714–2722

    PubMed  CAS  Google Scholar 

  15. Azuma M, Ito D, Yagita H, Okumura K, Phillips JH, Lanler LL, Somoza C (1993) B70 antigen is a second ligand for CTLA-4 and CD28. Nature 366:76–79. doi:10.1038/366076a0

    Article  PubMed  CAS  Google Scholar 

  16. Kishimoto C, Kuribayashi K, Masuda T, Tomioka N, Kawai C (1985) Immunologic behavior of lymphocytes in experimental viral myocarditis: significance of T lymphocytes in the severity of myocarditis and silent myocarditis in BALB/c-nu/nu mice. Circulation 71:1247–1254. doi:10.1161/01.CIR.71.6.1247

    Article  PubMed  CAS  Google Scholar 

  17. Matsumori A, Kawai C (1982) An animal model of congestive (dilated) cardiomyopathy: dilatation and hypertrophy of the heart in the chronic stage in DBA/2 mice with myocarditis caused by encephalomyocarditis virus. Circulation 66:355–360. doi:10.1161/01.CIR.66.2.355

    Article  PubMed  CAS  Google Scholar 

  18. Hara M, Matsumori A, Ono K, Kido H, Hwang MW, Miyamoto T, Iwasaki A, Okada M, Nakatani K, Sasayama S (1999) Mast cells cause apoptosis of cardiomyocytes and proliferation of other intramyocardial cells in vitro. Circulation 100:1443–1449. doi:10.1161/01.CIR.100.13.1443

    Article  PubMed  CAS  Google Scholar 

  19. Kitaura-Inenaga K, Hara M, Higuchi H, Yamamoto K, Yamaki A, Ono K, Nakano A, Kinoshita M, Sasayama S, Matsumori A (2003) Gene expression of cardiac mast cell chymase and tryptase in a murine model of heart failure caused by viral myocarditis. Circ J 67:881–884. doi:10.1253/circj.67.881

    Article  PubMed  CAS  Google Scholar 

  20. Matsumori A, Okada I, Kawai C, Crumpacker CS, Abelmann WF (1988) Animal models for therapeutic trials of viral myocarditis: effect of ribavirin and alpha interferon on coxsackievirus B3 and encephalomyocarditis virus myocarditis. In: Schultheiss H-P (ed) New concepts in viral heart disease. Springer, Berlin, pp 377–384

    Chapter  Google Scholar 

  21. Newburger JW, Sanders SP, Burns JC, Parness IA, Colan SD (1989) Left ventricular contractility and function in Kawasaki syndrome. Effect of intravenous gamma-globulin. Circulation 79:1237–1246. doi:10.1161/01.CIR.79.6.1237

    Article  PubMed  CAS  Google Scholar 

  22. Drucker N, Colan S, Lewis A, Beiser AS, Wessel DL, Takahashi M, Baker AL, Perez-Atayde AR, Newberger JW (1994) Gamma globulin treatment of acute myocarditis in the pediatric population. Circulation 89:252–257. doi:10.1161/01.CIR.89.1.252

    Article  PubMed  CAS  Google Scholar 

  23. McNamara DM, Holublcov R, Starling RC, Dec GW, Loh E, Torre-Amione G, Gass A, Janosco K, Tokarczyk T, Kessler P, Mann DL, Feldman AM, for the intervention in Myocarditis and Acute Cardiomyopathy (IMAC) Investigators (2001) Controlled trial of intravenous immune globulin. Circulation 103:2254–2259. doi:10.1161/01.CIR.103.18.2254

    Article  PubMed  CAS  Google Scholar 

  24. Mason JW, O’Connell JB, Herskowitz A, Rose NR, McManus BM, Billingham ME, Moon TE, The Myocarditis Treatment Trial Investigators (1995) A clinical trial of immunosuppressive therapy for myocarditis. N Engl J Med 333:269–275

    Article  PubMed  CAS  Google Scholar 

  25. Frustaci A, Chimenti C, Calabrese F, Pieroni M, Thiene G, Maseri A (2003) Immunosuppressive therapy for active lymphocytic myocarditis: virological and immunologic profile of responders versus nonresponders. Circulation 107:857–863. doi:10.1161/01.CIR.0000048147.15962.31

    Article  PubMed  Google Scholar 

  26. Kindermann I, Barth C, Mahfoud F, Ukena C, Lenski M, Yilmaz A, Kingel K, Kandolf R, Sechtem U, Cooper LT, Boehm M (2012) Update on myocarditis. J Am Coll Cardiol 59:779–792. doi:10.1016/j-jacc.2011.09.074

    Article  PubMed  Google Scholar 

  27. Cooper LT Jr, Hare JM, Tazelaar HD, Edwards WD, Starling RC, Deng MC, Menon S, Mulien GM, Jasky B, Bailey KR, Cunningham MW, Giant Cell DecGW Myocarditis Treatment Trial Investigators (2008) Usefulness of immunosuppression for giant cell myocarditis. Am J Cardiol 102:1535–1539. doi:10.1016/j.amjcard.2008.07.041

    Article  PubMed  CAS  Google Scholar 

  28. Cooper LT Jr, EIAmm C (2012) Giant cell myocarditis. Herz 37:632–636. doi:10.1007/s00059-012-3658-1

    Article  PubMed  Google Scholar 

  29. Frustaci A, Russo A, Chimenti C (2009) Randomized study on the efficacy of immunosuppressive therapy in patients with virus-negative inflammatory cardiomyopathy: the TIMIC study. Eur Heart J 30:1995–2002. doi:10.1093/eurheartj/ehp249

    Article  PubMed  CAS  Google Scholar 

  30. Seizer P, Klingel K, Sauter M, Westermann D, Ochmann C, Schonberger T, Schleicher R, Stellos K, Schmidt EM, Borst O, Bigalke B, Kandolf R, Langer H, Gawaz M, May AE (2012) Cyclophilin A affects inflammation, virus elimination and myocardial fibrosis in coxsackievirus-induced myocarditis. J Mol Cell Cardilol 53:6–14. doi:10.1016/j.yjmcc.2012.03.004. Epub 2012 Mar 15

    Google Scholar 

  31. Deonarain R, Cerullo D, Fuse K, Liu PP, Fish EN (2004) Protective role for interferonβ in coxsackievirus B3 infection. Circulation 110:3540–3543. doi:10.1161/01.CIR.0000136824.73458.20

    Article  PubMed  CAS  Google Scholar 

  32. Liu PP, Le J, Nian M (2001) Nuclear factor-κB decoy. Infiltrating the heart of the matter in inflammatory heart disease. Circ Res 89:850–852. doi:10.1161/hh2201.100347

    Article  PubMed  CAS  Google Scholar 

  33. Morishita R, Higaki J, Tomita N, Ogihara T (1998) Application of transcription factor ‘decoy’ strategy as means of gene therapy and study of gene expression in cardiovascular disease. Circ Res 82:1023–1028. doi:10.1161/01.RES.8210.1023

    Article  PubMed  CAS  Google Scholar 

  34. Morishita R (1998) Lessons from human arteries: how to design a gene therapy strategy for human treatment of cardiovascular disease. Circ Res 82:1349–1351. doi:10.1161/01.RES.82.12.1349

    Article  PubMed  CAS  Google Scholar 

  35. Yoshimura S, Morishita R, Hayashi K, Yamamoto K, Nakagami H, Kaneda Y, Sakai N, Ogihara T (2001) Inhibition of intimal hyperplasia after balloon injury in rat carotid artery model using cis-element ‘decoy’ of nuclear factor-κB binding site as a novel molecular strategy. Gene Ther 8:1635–1642

    Article  PubMed  CAS  Google Scholar 

  36. Morishita R, Sugimoto T, Aoki M, Kida I, Tomita N, Moriguchi A, Maeda K, Sawa Y, Kaneda Y, Higaki J, Ogihara T (1997) In vivo transfection of cis-element ‘decoy’ against nuclear factor-κB binding site prevents myocardial infarction. Nat Med 3:894–899. doi:10.1038/nmo897-894

    Article  PubMed  CAS  Google Scholar 

  37. Suzuki J, Ito H, Gotoh R, Morishita R, Egashira K, Isobe M (2004) Initial clinical cases of a NF-κB decoy at the site of coronary stenting for the prevention of restenosis. Circ J 68:270–271

    Article  Google Scholar 

  38. Egashira K, Suzuki J, Ito H, Aoki M, Isobe M, Morishita R (2008) Long-term follow up of initial clinical cases with NF-κB decoy oligodeoxynucleotide transfection at the site of coronary stenting. J Gene Med 10:805–809. doi:10.1002/jgm.1192

    Article  PubMed  CAS  Google Scholar 

  39. Suzuki J, Tezuka D, Morishita R, Isobe M (2009) An initial case of suppressed restenosis with nuclear factor-κB decoy transfection after percutaneous coronary intervention. J Gene Med 11:89–91. doi:10.1002/jgm.1266

    Article  PubMed  Google Scholar 

  40. Suzuki J, Morishita R, Amano J, Kaneda Y, Isobe M (2000) Decoy against nuclear factor-kappa B attenuates myocardial cell infiltration and arterial neointimal formation in murine cardiac allografts. Gene Ther 7:1847–1852

    Article  PubMed  CAS  Google Scholar 

  41. Suzuki J, Isobe M, Morishita R, Nagai R (2012) Application of nucleic acid drugs for organ transplantation. Curr Top Med Chem 12:1608–1612

    Google Scholar 

  42. Yokoseki O, Suzuki J, Kitabayashi H, Watanabe N, Wada Y, Aoki M, Morishita R, Kaneda Y, Ogihara T, Futamatsu H, Kobayashi Y, Isobe M (2001) cis element decoy against nuclear factor-κB attenuates development of experimental autoimmune myocarditis in rats. Circ Res 89:899–906. doi:10.1161/hh2201.099373

    Article  PubMed  CAS  Google Scholar 

  43. Kodama M, Matsumoto Y, Fujiwara M (1992) In vivo lymphocyte-mediated myocardial injuries demonstrated by adoptive transfer of experimental autoimmune myocarditis. Circulation 85:1918–1926. doi:10.1161/01.CIR.85.5.1918

    Article  PubMed  CAS  Google Scholar 

  44. Luescher TF, Steffel J, Eberli FR, Joner M, Nakazawa G, Tanner FC, Virmani R (2007) Drug-eluting stent and coronary thrombosis. Biological mechanisms and clinical implications. Circulation 115:1051–1058. doi:10.1161/CIRCULATIONAHA.106.675934

    Article  Google Scholar 

  45. Pasceri V, Patti G, Speciale G, Pristipino C, Richichi G, DiSciascio G (2007) Meta-analysis of clinical trials on use of drug-eluting stents for treatment of acute myocardial infarction. Am Heart J 153:749–754

    Article  PubMed  CAS  Google Scholar 

  46. Leon MB (2007) Late thrombosis a concern with drug-eluting stents. J Interv Cardiol 20:26–29. doi:10.1111/j.1540-8183.2007.00225.x

    Article  PubMed  Google Scholar 

  47. Mueller J, Wallukat G, Weng Y-G, Dandel M, Spiegelsberger S, Semrau S, Brandes K, Theodoridis V, Loebe M, Meyer R, Hetzer R (1997) Weaning from mechanical cardiac support in patients with idiopathic dilated cardiomyopathy. Circulation 96:542–549. doi:10.1161/01.CIR.96.2.542

    Article  Google Scholar 

  48. Wallukat G, Reinke P, Doerffel WV, Luther HP, Bestvater K, Felix SB, Baumann G (1996) Removal of autoantibodies in dilated cardiomyopathy by immunoadsorption. Int J Cardiol 54:191–195

    Article  PubMed  CAS  Google Scholar 

  49. Wallukat G, Mueller J, Hetzer R (2002) Specific removal of β1-adrenergic autoantibodies from patients with idiopathic dilated cardiomyopathy (letter). N Engl J Med 347:1806

    Article  PubMed  Google Scholar 

  50. Doerffel MV, Felix SB, Wallukat G, Brehme S, Bestvater K, Hofmann T, Kleber FX, Baumann G, Reinke P (1997) Short-term hemodynamic effects of immunoadsorption in dilated cardiomyopathy. Circulation 95:1994–1997. doi:10.1161/01.CIR.95.8.1994

    Article  Google Scholar 

  51. Doerffel WV, Wallukat G, Doerffel Y, Felix SB, Baumann G (2004) Immunoadsorption in idiopathic dilated cardiomyopathy, a 3-year follow-up. Int J Cardiol 97:529–534. doi:10.1061/j.ijcard.2004.03.001

    Article  Google Scholar 

  52. Mueller J, Wallukat G, Dandel M, Bieda H, Brandes K, Spiegelsberger S, Nissen E, Kunze R, Hetzer R (2000) Immunoglobulin adsorption in patients with idiopathic dilated cardiomyopathy. Circulation 101:385–391. doi:10.1161/01.CIR.101.4.385

    Article  Google Scholar 

  53. Staudt A, Schaeper F, Stangl V, Plegemann A, Boehm M, Merkel K, Wallukat G, Wernecke KD, Stangl K, Baumann G, Felix SB (2001) Immunohistological changes in dilated cardiomyopathy induced by immunoadsorption therapy and subsequent immunoglobulin substitution. Circulation 103:2681–2686. doi:10.1161/01.CIR.103.22.2681

    Article  PubMed  CAS  Google Scholar 

  54. Felix SB, Staudt A, Doerffel WV, Stangl V, Merkel K, Pohl M, Doecke WD, Morgera S, Neumayer HH, Wernecke KD, Wallukat G, Stangl K, Baumann G (2000) Hemodynamic effects of immunoadsorption and subsequent immunoglobulin substitution in dilated cardiomyopathy. Three-month results from a randomized study. J Am Coll Cardiol 35:1590–1598. doi:10.1016/S0735-1097(00)00568-4

    Article  PubMed  CAS  Google Scholar 

  55. Schmaldienst S, Muellner M, Goldammer S, Spitzauer S, Banyai S, Hoerl WH, Derfler K (2001) Intravenous immunoglobulin application following immunoadsorption: benefit or risk in patients with autoimmune diseases? Rheumatology 40:513–521. doi:10.1093/rheumatology/40.5.513

    Article  PubMed  CAS  Google Scholar 

  56. Staudt A, Boehm M, Knebel F, Grosse Y, Bischoff C, Hummel A, Dahm JB, Borges A, Jochmann N, Wernecke KD, Wallkat G, Baumann G, Felix SB (2002) Potential role of autoantibodies belonging to the immunoglobulin G-3 subclass in cardiac dysfunction among patients with dilated cardiomyo-pathy. Circulation 106:2448–2453. doi:10.1161/01.CIR.0000036746.49449.64

    Article  PubMed  CAS  Google Scholar 

  57. McCord JM (1985) Oxygen-derived free radicals in postischemic tissue injury. N Engl J Med 312:159–163. doi:10.1056/NEJM198501173120305

    Article  PubMed  CAS  Google Scholar 

  58. Schimke I, Mueller J, Priem F, Kruse I, Schoen B, Stein J, Kunze R, Wallukat G, Hetzer R (2001) Decreased oxidative stress in patients with idiopathic dilated cardiomyopathy one year after immunoglobulin adsorption. J Am Coll Cardiol 38:178–183. doi:10.1016/S0735-1097(01)01309-2

    Article  PubMed  CAS  Google Scholar 

  59. Kasai H, Kashima Y, Izawa A, Tomita T, Miyashita Y, Koyama J, Takahashi M, Yoshio T, Yazaki Y, Higuchi M, Ikeda U (2012) Immunoadsorption therapy reduces oxidative stress in patients with dilated cardiomyopathy. World J Cardiovasc Dis 2:305–312. doi:10.4236/wjcd.2012.24048

    Article  Google Scholar 

  60. Nagatomo Y, Baba A, Ito H, Naito K, Yoshizawa A, Kurita Y, Nakamura I, Monkawa T, Matsubara T, Wakabayashi Y, Ogawa S, Akaishi M, Yoshikawa T (2011) Specific immunoadsorption therapy using a tryptophan column in patients with refractory heart failure due to dilated cardiomyopathy. J Clin Apher 26:1–8. doi:10.1002/jca.20268

    Article  PubMed  Google Scholar 

  61. Nishimura H, Okazaki T, Tanaka Y, Nakatani K, Hara M, Matsumori A, Sasayama A, Mizoguchi A, Hiai H, Minato N, Honjo T (2001) Autoimmune dilated cardiomyopathy in PD-1 receptor deficient mice. Science 291:319–322. doi:10.1126/science.291.5502.319

    Article  PubMed  CAS  Google Scholar 

  62. Okazaki T, Tanaka Y, Nisio R, Mitsuiye T, Mizoguchi A, Wang J, Ishida M, Hiai H, Matsumori A, Minato N, Honjo T (2003) Autoantibodies against cardiac troponin I are responsible for dilated cardiomyopathy in PD-1-deficient mice. Nat Med 9:1477–1483. doi:10.1038/nm955

    Article  PubMed  CAS  Google Scholar 

  63. Matsumori A, Shimada T, Hattori H, Shimada M, Mason JW (2011) Autoantibodies against cardiac troponin I in patients presenting with myocarditis. CVD Prev Control 6:41–46. doi:10.1016/j.cvdpc.2011.02.004

    Article  Google Scholar 

  64. Hunt SA, Abraham WT, Chin MH, Feldman AM, Francis GS, Ganiats TG, Jessup M, Konstam MA, Mancini DM, Michl K, Oates JA, Rahko PS, Silver MA, Stevenson LW, Yancy CW, Antman EM, Smith SC Jr, Adams CD, Anderson JL, Faxon DP, Fuster V, Halperin JL, Hiratzka LF, Jacobs AK, Nishimura R, Ornato JP, Page RL, Riegel B (2005) ACC/AHA 2005 guideline update for the diagnosis and management of chronic heart failure in the adult: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (writing committee to update the 2001 guidelines for the evaluation and management of heart failure). Circulation 112:1825–1852. doi:10.1161/CIRCULATIONAHA.105.167587

    Article  Google Scholar 

  65. Bonow RO, Ganiats TG, Beam CT, Blake K, Casey DE Jr, Goodlin SJ, Grady KL, Hundley RF, Jessup M, Lynn TE, Masoudi FA, Nilasena D, Pina IL, Rockswold PD, Sadwin LB, Sikkema JD, Sincak CA, Spertus J, Torcson PJ, Torres E, Williams MK, Wong JB (2012) ACCF/AHA/AMA-PCPI 2011 performance measures for adults with heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Performance Measures and the American Medical Association–Physician Consortium for Performance Improvement. Circulation 125:2382–2401. doi:10.1161/CIR.0b013e3182507bec

    Article  PubMed  Google Scholar 

  66. Prabhu SD, Chandrasekar B, Murray DR, Freeman GL (2000) β-Adrenergic blockade in developing heart failure : effects on myocardial inflammatory cytokines, nitric oxide, and remodeling. Circulation 101:2103–2109. doi:10.1161/01.CIR.101.17.2103

    Article  PubMed  CAS  Google Scholar 

  67. Sun Y, Zhang J, Lu L, Chen SS, Quinn MT, Weber KT (2002) Aldosterone-induced inflammation in the rat heart. Am J Pathol 161:1773–1781

    Article  PubMed  CAS  Google Scholar 

  68. Pitt B, Zannad F, Remme WJ, Cody R, Castaigne A, Perez A, Palensky J, Wittes J, for the Randomized Aldactone Evaluation Study Investigators (1999) The effect of spironolactone on morbidity and mortality in patients with severe heart failure. N Engl J Med 341:709–717. doi:10.1056/NEJM199909023411001

    Article  PubMed  CAS  Google Scholar 

  69. Pitt B, Remme W, Zannad F, Neaton J, Martinez F, Roniker B, Pittman R, Hurley S, Kleiman J, Gatlin M, for the Eplerenone Post-Acute Myocardial Infarction Heart Failure Efficacy and Survival Study Investigators (2003) Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. N Engl J Med 348:1309–1321. doi:10.1056/NEJMoa030207

    Article  PubMed  CAS  Google Scholar 

  70. Suzuki G, Morita H, Mishima T, Sharov VG, Todor A, Tanhehco EJ, Rudolph AE, McMahon EG, Goldstein S, Sabbah HN (2002) Effects of long-term monotherapy with eplerenone, a novel aldosterone blocker, on progression of left ventricular dysfunction and remodeling in dogs with heart failure. Circulation 106:2967–2972. doi:10.1161/01.CIR.0000039104.56479.42

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuichi Kawai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kawai, C., Matsumori, A. Dilated cardiomyopathy update: infectious-immune theory revisited. Heart Fail Rev 18, 703–714 (2013). https://doi.org/10.1007/s10741-013-9401-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-013-9401-z

Keywords

Navigation