Skip to main content

Advertisement

Log in

Obstructive sleep apnea: the new cardiovascular disease. Part I: obstructive sleep apnea and the pathogenesis of vascular disease

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Obstructive sleep apnea (OSA) is increasingly recognized as a novel cardiovascular risk factor. OSA is implicated in the pathogenesis of hypertension, left ventricular dysfunction, coronary artery disease and stroke. OSA exerts its negative cardiovascular consequences through its unique pattern of intermittent hypoxia. Endothelial dysfunction, oxidative stress, and inflammation are all consequences of OSA directly linked to intermittent hypoxia and critical pathways in the pathogenesis of cardiovascular disease in patients with OSA. This review will discuss the known mechanisms of vascular dysfunction in patients with OSA and their implications for cardiovascular disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Young T, Skatrud J, Peppard PE (2004) Risk factors for obstructive sleep apnea in adults. J Am Med Assoc 291(16):2013–2016. doi:10.1001/jama.291.16.2013

    Article  CAS  Google Scholar 

  2. Young T et al (1993) The occurrence of sleep-disordered breathing among middle-aged adults. N Engl J Med 328(17):1230–1235. doi:10.1056/NEJM199304293281704

    Article  PubMed  CAS  Google Scholar 

  3. McNicholas WT, Bonsigore MR (2007) Sleep apnoea as an independent risk factor for cardiovascular disease: current evidence, basic mechanisms and research priorities. Eur Respir J 29(1):156–178. doi:10.1183/09031936.00027406

    Article  PubMed  CAS  Google Scholar 

  4. Campos-Rodriguez F et al (2005) Mortality in obstructive sleep apnea-hypopnea patients treated with positive airway pressure. Chest 128(2):624–633. doi:10.1378/chest.128.2.624

    Article  PubMed  Google Scholar 

  5. Doherty LS et al (2005) Long-term effects of nasal continuous positive airway pressure therapy on cardiovascular outcomes in sleep apnea syndrome. Chest 127(6):2076–2084. doi:10.1378/chest.127.6.2076

    Article  PubMed  Google Scholar 

  6. Marin JM et al (2005) Long-term cardiovascular outcomes in men with obstructive sleep apnoea-hypopnoea with or without treatment with continuous positive airway pressure: an observational study. Lancet 365(9464):1046–1053

    PubMed  Google Scholar 

  7. Badr MS (1996) Effect of ventilatory drive on upper airway patency in humans during NREM sleep. Respir Physiol 103(1):1–10. doi:10.1016/0034-5687(95)00079-8

    Article  PubMed  CAS  Google Scholar 

  8. Jordan AS, White DP (2008) Pharyngeal motor control and the pathogenesis of obstructive sleep apnea. Respir Physiol Neurobiol 160(1):1–7. doi:10.1016/j.resp.2007.07.009

    Article  PubMed  Google Scholar 

  9. Malhotra A et al (2001) Upper-airway collapsibility: measurements and sleep effects. Chest 120(1):156–161. doi:10.1378/chest.120.1.156

    Article  PubMed  CAS  Google Scholar 

  10. Horner RL et al (1989) Sites and sizes of fat deposits around the pharynx in obese patients with obstructive sleep apnoea and weight matched controls. Eur Respir J 2(7):613–622

    PubMed  CAS  Google Scholar 

  11. Morgan BJ, Denahan T, Ebert TJ (1993) Neurocirculatory consequences of negative intrathoracic pressure vs. asphyxia during voluntary apnea. J Appl Physiol 74(6):2969–2975

    PubMed  CAS  Google Scholar 

  12. Katragadda S et al (1997) Neural mechanism of the pressor response to obstructive and nonobstructive apnea. J Appl Physiol 83(6):2048–2054

    PubMed  CAS  Google Scholar 

  13. Peng YJ, Prabhakar NR (2003) Reactive oxygen species in the plasticity of respiratory behavior elicited by chronic intermittent hypoxia. J Appl Physiol 94(6):2342–2349

    PubMed  CAS  Google Scholar 

  14. Prabhakar NR et al (2001) Intermittent hypoxia: cell to system. Am J Physiol Lung Cell Mol Physiol 281(3):L524–L528

    PubMed  CAS  Google Scholar 

  15. Prabhakar NR, Kline DD (2002) Ventilatory changes during intermittent hypoxia: importance of pattern and duration. High Al Med Biol 3(2):195–204. doi:10.1089/15270290260131920

    Article  Google Scholar 

  16. Cutler MJ et al (2004) Periods of intermittent hypoxic apnea can alter chemoreflex control of sympathetic nerve activity in humans. Am J Physiol Heart Circ Physiol 287(5):H2054–H2060. doi:10.1152/ajpheart.00377.2004

    Article  PubMed  CAS  Google Scholar 

  17. Lesske J et al (1997) Hypertension caused by chronic intermittent hypoxia—influence of chemoreceptors and sympathetic nervous system. J Hypertens 15(12 Pt 2):1593–1603

    PubMed  CAS  Google Scholar 

  18. Fletcher EC (2001) Invited review: physiological consequences of intermittent hypoxia: systemic blood pressure. J Appl Physiol 90(4):1600–1605

    PubMed  CAS  Google Scholar 

  19. Brooks D et al (1997) Obstructive sleep apnea as a cause of systemic hypertension. Evidence from a canine model. J Clin Invest 99(1):106–109. doi:10.1172/JCI119120

    Article  PubMed  CAS  Google Scholar 

  20. Somers VK et al (1995) Sympathetic neural mechanisms in obstructive sleep apnea. J Clin Invest 96(4):1897–1904. doi:10.1172/JCI118235

    Article  PubMed  CAS  Google Scholar 

  21. Xie A et al (2000) Neurocirculatory consequences of intermittent asphyxia in humans. J Appl Physiol 89(4):1333–1339

    PubMed  CAS  Google Scholar 

  22. Cutler MJ et al (2004) Hypoxia-mediated prolonged elevation of sympathetic nerve activity after periods of intermittent hypoxic apnea. J Appl Physiol 96(2):754–761. doi:10.1152/japplphysiol.00506.2003

    Article  PubMed  Google Scholar 

  23. Xie A et al (2001) Exposure to hypoxia produces long-lasting sympathetic activation in humans. J Appl Physiol 91(4):1555–1562

    PubMed  CAS  Google Scholar 

  24. Khayat RN et al (2004) Role of sensory input from the lungs in control of muscle sympathetic nerve activity during and after apnea in humans. J Appl Physiol 97(2):635–640. doi:10.1152/japplphysiol.00241.2004

    Article  PubMed  Google Scholar 

  25. Prabhakar NR et al (2005) Cardiovascular alterations by chronic intermittent hypoxia: importance of carotid body chemoreflexes. Clin Exp Pharmacol Physiol 32(5–6):447–449. doi:10.1111/j.1440-1681.2005.04209.x

    Article  PubMed  CAS  Google Scholar 

  26. Fletcher EC et al (1992) Carotid chemoreceptors, systemic blood pressure, and chronic episodic hypoxia mimicking sleep apnea. J Appl Physiol 72(5):1978–1984

    PubMed  CAS  Google Scholar 

  27. Fletcher EC et al (1992) Repetitive, episodic hypoxia causes diurnal elevation of blood pressure in rats. Hypertension 19(6 Pt 1):555–561

    PubMed  CAS  Google Scholar 

  28. Fletcher EC et al (1992) Sympathetic denervation blocks blood pressure elevation in episodic hypoxia. Hypertension 20(5):612–619

    PubMed  CAS  Google Scholar 

  29. Bao G et al (1997) Blood pressure response to chronic episodic hypoxia: role of the sympathetic nervous system. J Appl Physiol 83(1):95–101

    PubMed  CAS  Google Scholar 

  30. Dick TE et al (2007) Acute intermittent hypoxia increases both phrenic and sympathetic nerve activities in the rat. Exp Physiol 92(1):87–97. doi:10.1113/expphysiol.2006.035758

    Article  PubMed  Google Scholar 

  31. Sica AL et al (2000) Chronic-intermittent hypoxia: a model of sympathetic activation in the rat. Respir Physiol 121(2–3):173–184. doi:10.1016/S0034-5687(00)00126-2

    Article  PubMed  CAS  Google Scholar 

  32. Greenberg HE et al (1999) Chronic intermittent hypoxia increases sympathetic responsiveness to hypoxia and hypercapnia. J Appl Physiol 86(1):298–305

    PubMed  CAS  Google Scholar 

  33. Fletcher EC (2003) Sympathetic over activity in the etiology of hypertension of obstructive sleep apnea. Sleep 26(1):15–19

    PubMed  Google Scholar 

  34. Julius S, Esler MD, Randall OS (1975) Role of the autonomic nervous system in mild human hypertension. Clin Sci Mol Med Suppl 2:243s–252s

    PubMed  CAS  Google Scholar 

  35. Esler M et al (1986) Mechanism of elevated plasma noradrenaline in the course of essential hypertension. J Cardiovasc Pharmacol 8(Suppl 5):S39–S43

    Article  PubMed  Google Scholar 

  36. Esler M et al (1976) High-renin essential hypertension: adrenergic cardiovascular correlates. Clin Sci Mol Med Suppl 3:181s–184s

    PubMed  CAS  Google Scholar 

  37. Oparil S, Zaman MA, Calhoun DA (2003) Pathogenesis of hypertension. Ann Intern Med 139(9):761–776

    PubMed  CAS  Google Scholar 

  38. Guo GB, Abboud FM (1984) Angiotensin II attenuates baroreflex control of heart rate and sympathetic activity. Am J Physiol 246(1 Pt 2):H80–H89

    PubMed  CAS  Google Scholar 

  39. Rumantir MS et al (2000) The ‘adrenaline hypothesis’ of hypertension revisited: evidence for adrenaline release from the heart of patients with essential hypertension. J Hypertens 18(6):717–723. doi:10.1097/00004872-200018060-00009

    Article  PubMed  CAS  Google Scholar 

  40. Kim JR et al (1999) Heart rate and subsequent blood pressure in young adults: the CARDIA study. Hypertension 33(2):640–646

    PubMed  CAS  Google Scholar 

  41. Farsang C et al (1981) Effect of prazosin and oxprenolol on plasma renin activity and blood pressure in patients with essential hypertension. Cardiology 67(3):164–171

    Article  PubMed  CAS  Google Scholar 

  42. Winternitz SR, Katholi RE, Oparil S (1980) Role of the renal sympathetic nerves in the development and maintenance of hypertension in the spontaneously hypertensive rat. J Clin Invest 66(5):971–978. doi:10.1172/JCI109966

    Article  PubMed  CAS  Google Scholar 

  43. Ma X et al (2006) Dual mechanisms of angiotensin-induced activation of mouse sympathetic neurones. J Physiol 573(Pt 1):45–63. doi:10.1113/jphysiol.2006.106716

    Article  PubMed  CAS  Google Scholar 

  44. Ma X, Abboud FM, Chapleau MW (2001) A novel effect of angiotensin on renal sympathetic nerve activity in mice. J Hypertens 19(3 Pt 2):609–618. doi:10.1097/00004872-200103001-00014

    Article  PubMed  CAS  Google Scholar 

  45. Ma X et al (2001) Angiotensin selectively activates a subpopulation of postganglionic sympathetic neurons in mice. Circ Res 88(8):787–793. doi:10.1161/hh0801.089542

    Article  PubMed  CAS  Google Scholar 

  46. Fletcher EC, Bao G, Li R (1999) Renin activity and blood pressure in response to chronic episodic hypoxia. Hypertension 34(2):309–314

    PubMed  CAS  Google Scholar 

  47. Fletcher EC, Orolinova N, Bader M (2002) Blood pressure response to chronic episodic hypoxia: the renin-angiotensin system. J Appl Physiol 92(2):627–633

    PubMed  CAS  Google Scholar 

  48. Somers VK, Mark AL, Abboud FM (1991) Interaction of baroreceptor and chemoreceptor reflex control of sympathetic nerve activity in normal humans. J Clin Invest 87(6):1953–1957. doi:10.1172/JCI115221

    Article  PubMed  CAS  Google Scholar 

  49. Chapleau MW, Hajduczok G, Abboud FM (1988) Mechanisms of resetting of arterial baroreceptors: an overview. Am J Med Sci 295(4):327–334. doi:10.1097/00000441-198804000-00019

    Article  PubMed  CAS  Google Scholar 

  50. Cooper VL et al (2007) Daytime variability of baroreflex function in patients with obstructive sleep apnoea: implications for hypertension. Exp Physiol 92(2):391–398. doi:10.1113/expphysiol.2006.035584

    Article  PubMed  CAS  Google Scholar 

  51. Brooks D et al (1999) Baroreflex control of heart rate in a canine model of obstructive sleep apnea. Am J Respir Crit Care Med 159(4 Pt 1):1293–1297

    PubMed  CAS  Google Scholar 

  52. Li Z et al (1996) Oxygen-derived free radicals contribute to baroreceptor dysfunction in atherosclerotic rabbits. Circ Res 79(4):802–811

    PubMed  CAS  Google Scholar 

  53. Peng YJ et al (2003) Induction of sensory long-term facilitation in the carotid body by intermittent hypoxia: implications for recurrent apneas. Proc Natl Acad Sci USA 100(17):10073–10078. doi:10.1073/pnas.1734109100

    Article  PubMed  CAS  Google Scholar 

  54. Rouwet EV et al (2002) Hypoxia induces aortic hypertrophic growth, left ventricular dysfunction, and sympathetic hyperinnervation of peripheral arteries in the chick embryo. Circulation 105(23):2791–2796. doi:10.1161/01.CIR.0000017497.47084.06

    Article  PubMed  CAS  Google Scholar 

  55. Phillips SA et al (2006) Chronic intermittent hypoxia alters NE reactivity and mechanics of skeletal muscle resistance arteries. J Appl Physiol 100(4):1117–1123. doi:10.1152/japplphysiol.00994.2005

    Article  PubMed  CAS  Google Scholar 

  56. Phillips SA et al (2004) Chronic intermittent hypoxia impairs endothelium-dependent dilation in rat cerebral and skeletal muscle resistance arteries. Am J Physiol Heart Circ Physiol 286(1):H388–H393. doi:10.1152/ajpheart.00683.2003

    Article  PubMed  CAS  Google Scholar 

  57. Allahdadi KJ, Walker BR, Kanagy NL (2005) Augmented endothelin vasoconstriction in intermittent hypoxia-induced hypertension. Hypertension 45(4):705–709. doi:10.1161/01.HYP.0000153794.52852.04

    Article  PubMed  CAS  Google Scholar 

  58. Kanagy NL, Walker BR, Nelin LD (2001) Role of endothelin in intermittent hypoxia-induced hypertension. Hypertension 37(2 Part 2):511–515

    PubMed  CAS  Google Scholar 

  59. Sforza E et al (1996) Role of chemosensitivity in intrathoracic pressure changes during obstructive sleep apnea. Am J Respir Crit Care Med 154(6 Pt 1):1741–1747

    PubMed  CAS  Google Scholar 

  60. Chen L, Scharf SM (1997) Comparative hemodynamic effects of periodic obstructive and simulated central apneas in sedated pigs. J Appl Physiol 83(2):485–494

    PubMed  CAS  Google Scholar 

  61. Chen L, Shi Q, Scharf SM (2000) Hemodynamic effects of periodic obstructive apneas in sedated pigs with congestive heart failure. J Appl Physiol 88(3):1051–1060

    PubMed  CAS  Google Scholar 

  62. Hall MJ et al (1998) Magnitude and time course of hemodynamic responses to Mueller maneuvers in patients with congestive heart failure. J Appl Physiol 85(4):1476–1484

    PubMed  CAS  Google Scholar 

  63. Fletcher EC et al (1999) Pulmonary edema develops after recurrent obstructive apneas. Am J Respir Crit Care Med 160((5 Pt 1)):1688–1696

    PubMed  CAS  Google Scholar 

  64. Bradley TD, Floras JS (2003) Sleep apnea and heart failure: Part I: obstructive sleep apnea. Circulation 107(12):1671–1678. doi:10.1161/01.CIR.0000061757.12581.15

    Article  PubMed  Google Scholar 

  65. Naughton MT (1998) Impact of treatment of sleep apnoea on left ventricular function in congestive heart failure. Thorax 53(Suppl 3):S37–S40

    Article  PubMed  Google Scholar 

  66. Tkacova R et al (1998) Effects of continuous positive airway pressure on obstructive sleep apnea and left ventricular afterload in patients with heart failure. Circulation 98(21):2269–2275

    PubMed  CAS  Google Scholar 

  67. Koller A, Huang A (1994) Impaired nitric oxide-mediated flow-induced dilation in arterioles of spontaneously hypertensive rats. Circ Res 74(3):416–421

    PubMed  CAS  Google Scholar 

  68. Brevetti G et al (2003) Endothelial dysfunction and cardiovascular risk prediction in peripheral arterial disease: additive value of flow-mediated dilation to ankle-brachial pressure index. Circulation 108(17):2093–2098. doi:10.1161/01.CIR.0000095273.92468.D9

    Article  PubMed  Google Scholar 

  69. Ross R (1993) The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 362(6423):801–809. doi:10.1038/362801a0

    Article  PubMed  CAS  Google Scholar 

  70. Juonala M et al (2007) Brachial artery flow-mediated dilation and asymmetrical dimethylarginine in the cardiovascular risk in young Finns study. Circulation 116(12):1367–1373. doi:10.1161/CIRCULATIONAHA.107.690016

    Article  PubMed  Google Scholar 

  71. Ungvari Z et al (2002) Impaired nitric oxide-mediated flow-induced coronary dilation in hyperhomocysteinemia: morphological and functional evidence for increased peroxynitrite formation. Am J Pathol 161(1):145–153

    PubMed  CAS  Google Scholar 

  72. Corretti MC et al (2002) Guidelines for the ultrasound assessment of endothelial-dependent flow-mediated vasodilation of the brachial artery: a report of the International Brachial Artery Reactivity Task Force. J Am Coll Cardiol 39(2):257–265. doi:10.1016/S0735-1097(01)01746-6

    Article  PubMed  Google Scholar 

  73. Kato M et al (2000) Impairment of endothelium-dependent vasodilation of resistance vessels in patients with obstructive sleep apnea. Circulation 102(21):2607–2610

    PubMed  CAS  Google Scholar 

  74. Ip MS et al (2004) Endothelial function in obstructive sleep apnea and response to treatment. Am J Respir Crit Care Med 169(3):348–353. doi:10.1164/rccm.200306-767OC

    Article  PubMed  Google Scholar 

  75. Nieto FJ et al (2004) Sleep apnea and markers of vascular endothelial function in a large community sample of older adults. Am J Respir Crit Care Med 169(3):354–360. doi:10.1164/rccm.200306-756OC

    Article  PubMed  Google Scholar 

  76. Tahawi Z et al (2001) Altered vascular reactivity in arterioles of chronic intermittent hypoxic rats. J Appl Physiol 90(5):2007–2013, discussion 2000

    Google Scholar 

  77. Ip MS et al (2000) Circulating nitric oxide is suppressed in obstructive sleep apnea and is reversed by nasal continuous positive airway pressure. Am J Respir Crit Care Med 162(6):2166–2171

    PubMed  CAS  Google Scholar 

  78. Geny B et al (2006) Comments on point-counterpoint “flow-mediated dilation does/does not reflect nitric oxide-mediated endothelial function”. J Appl Physiol 100(1):362. doi:10.1152/japplphysiol.01313.2005

    Article  PubMed  CAS  Google Scholar 

  79. Wolin MS et al (1998) Oxidant—nitric oxide signalling mechanisms in vascular tissue. Biochemistry. Biokhimiia 63(7):810–816

    PubMed  CAS  Google Scholar 

  80. Ogita H, Liao J (2004) Endothelial function and oxidative stress. Endothelium 11(2):123–132. doi:10.1080/10623320490482664

    Article  PubMed  CAS  Google Scholar 

  81. Touyz RM, Schiffrin EL (2004) Reactive oxygen species in vascular biology: implications in hypertension. Histochem Cell Biol 122(4):339–352. doi:10.1007/s00418-004-0696-7

    Article  PubMed  CAS  Google Scholar 

  82. Grebe M et al (2006) Antioxidant vitamin C improves endothelial function in obstructive sleep apnea. Am J Respir Crit Care Med 173(8):897–901. doi:10.1164/rccm.200508-1223OC

    Article  PubMed  CAS  Google Scholar 

  83. El Solh AA et al (2006) Allopurinol improves endothelial function in sleep apnoea: a randomised controlled study. Eur Respir J 27(5):997–1002

    PubMed  CAS  Google Scholar 

  84. Pieper GM, Dembny K, Siebeneich W (1998) Long-term treatment in vivo with NOX-101, a scavenger of nitric oxide, prevents diabetes-induced endothelial dysfunction. Diabetologia 41(10):1220–1226. doi:10.1007/s001250051055

    Article  PubMed  CAS  Google Scholar 

  85. Katayama Y et al (2004) Oral vitamin C ameliorates smoking-induced arterial wall stiffness in healthy volunteers. J Atheroscler Thromb 11(6):354–357

    PubMed  CAS  Google Scholar 

  86. Svatikova A et al (2004) Circulating free nitrotyrosine in obstructive sleep apnea. Am J Physiol Regul Integr Comp Physiol 287(2):R284–R287. doi:10.1152/ajpregu.00241.2004

    PubMed  CAS  Google Scholar 

  87. Cosentino F et al (2008) Chronic treatment with tetrahydrobiopterin reverses endothelial dysfunction and oxidative stress in hypercholesterolaemia. Heart (British Cardiac Society) 94(4):487–492. doi:10.1136/hrt.2007.122184

    CAS  Google Scholar 

  88. Channon KM (2004) Tetrahydrobiopterin: regulator of endothelial nitric oxide synthase in vascular disease. Trends Cardiovasc Med 14(8):323–327. doi:10.1016/j.tcm.2004.10.003

    Article  PubMed  CAS  Google Scholar 

  89. Stroes E et al (1997) Tetrahydrobiopterin restores endothelial function in hypercholesterolemia. J Clin Invest 99(1):41–46. doi:10.1172/JCI119131

    Article  PubMed  CAS  Google Scholar 

  90. Heller R et al (1999) L-Ascorbic acid potentiates nitric oxide synthesis in endothelial cells. J Biol Chem 274(12):8254–8260. doi:10.1074/jbc.274.12.8254

    Article  PubMed  CAS  Google Scholar 

  91. Zweier JL et al (1994) Measurement and characterization of free radical generation in reoxygenated human endothelial cells. Am J Physiol 266(3 Pt 1):C700–C708

    PubMed  CAS  Google Scholar 

  92. Zweier JL (1998) Free radical generation in human endothelial cells exposed to anoxia and reoxygenation. Transplant Proc 30(8):4228–4232. doi:10.1016/S0041-1345(98)01399-2

    Article  PubMed  CAS  Google Scholar 

  93. Houston M et al (1999) Binding of xanthine oxidase to vascular endothelium. Kinetic characterization and oxidative impairment of nitric oxide-dependent signaling. J Biol Chem 274(8):4985–4994. doi:10.1074/jbc.274.8.4985

    Article  PubMed  CAS  Google Scholar 

  94. Ohara Y, Peterson TE, Harrison DG (1993) Hypercholesterolemia increases endothelial superoxide anion production. J Clin Invest 91(6):2546–2551. doi:10.1172/JCI116491

    Article  PubMed  CAS  Google Scholar 

  95. Mervaala EM et al (2001) Endothelial dysfunction and xanthine oxidoreductase activity in rats with human renin and angiotensinogen genes. Hypertension 37(2 Part 2):414–418

    PubMed  CAS  Google Scholar 

  96. Berry CE, Hare JM (2004) Xanthine oxidoreductase and cardiovascular disease: molecular mechanisms and pathophysiological implications. J Physiol 555(Pt 3):589–606. doi:10.1113/jphysiol.2003.055913

    Article  PubMed  CAS  Google Scholar 

  97. Butler R et al (2000) Allopurinol normalizes endothelial dysfunction in type 2 diabetics with mild hypertension. Hypertension 35(3):746–751

    PubMed  CAS  Google Scholar 

  98. Farquharson CA et al (2002) Allopurinol improves endothelial dysfunction in chronic heart failure. Circulation 106(2):221–226. doi:10.1161/01.CIR.0000022140.61460.1D

    Article  PubMed  CAS  Google Scholar 

  99. Guthikonda S et al (2004) Role of xanthine oxidase in conduit artery endothelial dysfunction in cigarette smokers. Am J Cardiol 93(5):664–668. doi:10.1016/j.amjcard.2003.11.046

    Article  PubMed  CAS  Google Scholar 

  100. Ohike Y et al (2005) Amelioration of vascular endothelial dysfunction in obstructive sleep apnea syndrome by nasal continuous positive airway pressure—possible involvement of nitric oxide and asymmetric NG, NG-dimethylarginine. Circ J 69(2):221–226. doi:10.1253/circj.69.221

    Article  PubMed  CAS  Google Scholar 

  101. Suzuki YJ et al (2006) Oxidative stress and oxidant signaling in obstructive sleep apnea and associated cardiovascular diseases. Free Radic Biol Med 40(10):1683–1692. doi:10.1016/j.freeradbiomed.2006.01.008

    Article  PubMed  CAS  Google Scholar 

  102. Svatikova A et al (2005) Oxidative stress in obstructive sleep apnoea. Eur Heart J 26(22):2435–2439. doi:10.1093/eurheartj/ehi440

    Article  PubMed  CAS  Google Scholar 

  103. Wali SO et al (1998) Susceptibility of LDL to oxidative stress in obstructive sleep apnea. Sleep 21(3):290–296

    PubMed  CAS  Google Scholar 

  104. Ozturk L et al (2003) Lipid peroxidation and osmotic fragility of red blood cells in sleep-apnea patients. Clin Chim Acta 332(1–2):83–88. doi:10.1016/S0009-8981(03)00126-8

    Article  PubMed  CAS  Google Scholar 

  105. Alzoghaibi MA, Bahammam AS (2005) Lipid peroxides, superoxide dismutase and circulating IL-8 and GCP-2 in patients with severe obstructive sleep apnea: a pilot study. Sleep Breath 9(3):119–126. doi:10.1007/s11325-005-0022-1

    Article  PubMed  Google Scholar 

  106. Lavie L, Vishnevsky A, Lavie P (2004) Evidence for lipid peroxidation in obstructive sleep apnea. Sleep 27(1):123–128

    PubMed  Google Scholar 

  107. Barcelo A et al (2000) Abnormal lipid peroxidation in patients with sleep apnoea. Eur Respir J 16(4):644–647. doi:10.1034/j.1399-3003.2000.16d13.x

    Article  PubMed  CAS  Google Scholar 

  108. Christou K et al (2003) Reactive oxygen metabolites (ROMs) as an index of oxidative stress in obstructive sleep apnea patients. Sleep Breath 7(3):105–110. doi:10.1007/s11325-003-0105-9

    Article  PubMed  Google Scholar 

  109. Christou K et al (2003) Antioxidant capacity in obstructive sleep apnea patients. Sleep Med 4(3):225–228. doi:10.1016/S1389-9457(02)00253-8

    Article  PubMed  Google Scholar 

  110. Christou K et al (2008) Nasal continuous positive airway pressure treatment reduces systemic oxidative stress in patients with severe obstructive sleep apnea syndrome. Sleep Med (in press). doi:10.1016/j.sleep.2007.10.011

  111. Carpagnano GE et al (2002) Increased 8-isoprostane and interleukin-6 in breath condensate of obstructive sleep apnea patients. Chest 122(4):1162–1167. doi:10.1378/chest.122.4.1162

    Article  PubMed  CAS  Google Scholar 

  112. Carpagnano GE et al (2003) 8-Isoprostane, a marker of oxidative stress, is increased in exhaled breath condensate of patients with obstructive sleep apnea after night and is reduced by continuous positive airway pressure therapy. Chest 124(4):1386–1392. doi:10.1378/chest.124.4.1386

    Article  PubMed  CAS  Google Scholar 

  113. Tangirala RK et al (2001) Reduction of isoprostanes and regression of advanced atherosclerosis by apolipoprotein E. J Biol Chem 276(1):261–266. doi:10.1074/jbc.M003324200

    Article  PubMed  CAS  Google Scholar 

  114. Pratico D (1999) F(2)-isoprostanes: sensitive and specific non-invasive indices of lipid peroxidation in vivo. Atherosclerosis 147(1):1–10. doi:10.1016/S0021-9150(99)00257-9

    Article  PubMed  CAS  Google Scholar 

  115. Pratico D et al (1997) Localization of distinct F2-isoprostanes in human atherosclerotic lesions. J Clin Invest 100(8):2028–2034. doi:10.1172/JCI119735

    Article  PubMed  CAS  Google Scholar 

  116. Tan KC et al (2006) HDL dysfunction in obstructive sleep apnea. Atherosclerosis 184(2):377–382. doi:10.1016/j.atherosclerosis.2005.04.024

    Article  PubMed  CAS  Google Scholar 

  117. Yamauchi M et al (2005) Oxidative stress in obstructive sleep apnea. Chest 127(5):1674–1679. doi:10.1378/chest.127.5.1674

    Article  PubMed  CAS  Google Scholar 

  118. Park AM, Suzuki YJ (2007) Effects of intermittent hypoxia on oxidative stress-induced myocardial damage in mice. J Appl Physiol 102(5):1806–1814. doi:10.1152/japplphysiol.01291.2006

    Article  PubMed  CAS  Google Scholar 

  119. Takahashi K et al (2008) Plasma thioredoxin, a novel oxidative stress marker, in patients with obstructive sleep apnea before and after nasal continuous positive airway pressure. Antioxid Redox Signal 10(4):715–726. doi:10.1089/ars.2007.1949

    Article  PubMed  CAS  Google Scholar 

  120. Barcelo A et al (2006) Antioxidant status in patients with sleep apnoea and impact of continuous positive airway pressure treatment. Eur Respir J 27(4):756–760. doi:10.1183/09031936.06.00067605

    Article  PubMed  CAS  Google Scholar 

  121. Teramoto S et al (2007) Improvement of endothelial function with allopurinol may occur in selected patients with OSA: effect of age and sex. Eur Respir J 29(1):216–217, author reply 217–218. doi:10.1183/09031936.00104806

  122. Veasey SC et al (2004) Long-term intermittent hypoxia in mice: protracted hypersomnolence with oxidative injury to sleep-wake brain regions. Sleep 27(2):194–201

    PubMed  Google Scholar 

  123. Xu W et al (2004) Increased oxidative stress is associated with chronic intermittent hypoxia-mediated brain cortical neuronal cell apoptosis in a mouse model of sleep apnea. Neuroscience 126(2):313–323. doi:10.1016/j.neuroscience.2004.03.055

    Article  PubMed  CAS  Google Scholar 

  124. Schulz R et al (2000) Enhanced release of superoxide from polymorphonuclear neutrophils in obstructive sleep apnea. Impact of continuous positive airway pressure therapy. Am J Respir Crit Care Med 162(2 Pt 1):566–570

    PubMed  CAS  Google Scholar 

  125. Row BW et al (2004) Platelet-activating factor receptor-deficient mice are protected from experimental sleep apnea-induced learning deficits. J Neurochem 89(1):189–196. doi:10.1111/j.1471-4159.2004.02352.x

    Article  PubMed  CAS  Google Scholar 

  126. Troncoso Brindeiro CM et al (2007) Reactive oxygen species contribute to sleep apnea-induced hypertension in rats. Am J Physiol Heart Circ Physiol 293(5):H2971–H2976. doi:10.1152/ajpheart.00219.2007

    Article  PubMed  CAS  Google Scholar 

  127. Htoo AK et al (2006) Activation of nuclear factor kappaB in obstructive sleep apnea: a pathway leading to systemic inflammation. Sleep Breath 10(1):43–50. doi:10.1007/s11325-005-0046-6

    Article  PubMed  Google Scholar 

  128. Nacher M et al (2007) Recurrent obstructive apneas trigger early systemic inflammation in a rat model of sleep apnea. Respir Physiol Neurobiol 155(1):93–96. doi:10.1016/j.resp.2006.06.004

    Article  PubMed  Google Scholar 

  129. Vgontzas AN et al (1997) Elevation of plasma cytokines in disorders of excessive daytime sleepiness: role of sleep disturbance and obesity. J Clin Endocrinol Metab 82(5):1313–1316. doi:10.1210/jc.82.5.1313

    Article  PubMed  CAS  Google Scholar 

  130. Kataoka T et al (2004) The effect of surgical treatment of obstructive sleep apnea syndrome on the plasma TNF-alpha levels. Tohoku J Exp Med 204(4):267–272. doi:10.1620/tjem.204.267

    Article  PubMed  Google Scholar 

  131. Punjabi NM et al (2007) Elevated levels of neopterin in sleep-disordered breathing. Chest 132(4):1124–1130. doi:10.1378/chest.07-0743

    Article  PubMed  CAS  Google Scholar 

  132. Yudkin JS et al (2000) Inflammation, obesity, stress and coronary heart disease: is interleukin-6 the link? Atherosclerosis 148(2):209–214. doi:10.1016/S0021-9150(99)00463-3

    Article  PubMed  CAS  Google Scholar 

  133. Ridker PM et al (2000) Plasma concentration of interleukin-6 and the risk of future myocardial infarction among apparently healthy men. Circulation 101(15):1767–1772

    PubMed  CAS  Google Scholar 

  134. Lindmark E et al (2001) Relationship between interleukin 6 and mortality in patients with unstable coronary artery disease: effects of an early invasive or noninvasive strategy. J Am Med Assoc 286(17):2107–2113. doi:10.1001/jama.286.17.2107

    Article  CAS  Google Scholar 

  135. Haverkate F et al (1997) Production of C-reactive protein and risk of coronary events in stable and unstable angina. European Concerted Action on Thrombosis and Disabilities Angina Pectoris Study Group. Lancet 349(9050):462–466. doi:10.1016/S0140-6736(96)07591-5

    Google Scholar 

  136. Lindahl B et al (2000) Markers of myocardial damage and inflammation in relation to long-term mortality in unstable coronary artery disease. FRISC Study Group. Fragmin during instability in coronary artery disease. New Engl J Med 343(16):1139–1147. doi:10.1056/NEJM200010193431602

  137. Burke AP et al (2002) Elevated C-reactive protein values and atherosclerosis in sudden coronary death: association with different pathologies. Circulation 105(17):2019–2023. doi:10.1161/01.CIR.0000015507.29953.38

    Article  PubMed  CAS  Google Scholar 

  138. Shamsuzzaman AS et al (2002) Elevated C-reactive protein in patients with obstructive sleep apnea. Circulation 105(21):2462–2464. doi:10.1161/01.CIR.0000018948.95175.03

    Article  PubMed  CAS  Google Scholar 

  139. Larkin EK et al (2005) Variation of C-reactive protein levels in adolescents: association with sleep-disordered breathing and sleep duration. Circulation 111(15):1978–1984. doi:10.1161/01.CIR.0000161819.76138.5E

    Article  PubMed  CAS  Google Scholar 

  140. Yokoe T et al (2003) Elevated levels of C-reactive protein and interleukin-6 in patients with obstructive sleep apnea syndrome are decreased by nasal continuous positive airway pressure. Circulation 107(8):1129–1134. doi:10.1161/01.CIR.0000052627.99976.18

    Article  PubMed  CAS  Google Scholar 

  141. Lefer AM (1999) Role of the beta2-integrins and immunoglobulin superfamily members in myocardial ischemia-reperfusion. Ann Thorac Surg 68(5):1920–1923. doi:10.1016/S0003-4975(99)01017-6

    Article  PubMed  CAS  Google Scholar 

  142. Minoguchi K et al (2005) Increased carotid intima-media thickness and serum inflammatory markers in obstructive sleep apnea. Am J Respir Crit Care Med 172(5):625–630. doi:10.1164/rccm.200412-1652OC

    Article  PubMed  Google Scholar 

  143. Dyugovskaya L, Lavie P, Lavie L (2002) Increased adhesion molecules expression and production of reactive oxygen species in leukocytes of sleep apnea patients. Am J Respir Crit Care Med 165(7):934–939

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian Patt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khayat, R., Patt, B. & Hayes, D. Obstructive sleep apnea: the new cardiovascular disease. Part I: obstructive sleep apnea and the pathogenesis of vascular disease. Heart Fail Rev 14, 143–153 (2009). https://doi.org/10.1007/s10741-008-9112-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-008-9112-z

Keywords

Navigation