Skip to main content

Advertisement

Log in

Inhibition of Mitochondrial Permeability Transition Pores by Cyclosporine A Improves Cytochrome c Oxidase Function and Increases Rate of ATP Synthesis in Failing Cardiomyocytes

  • Basic Research Contributions
  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Background: We previously showed that mitochondrial respiratory function is abnormal in dogs with chronic heart failure (HF). Mitochondrial permeability transition pores (MPTP) can affect mitochondrial inner membrane potential (Δ < eqid1 > m) and mitochondrial function in normal cardiomyocytes. The potential impact of MPTP on Δ < eqid2 > m and mitochondrial respiratory function in HF has not yet been determined. We tested the hypothesis that cyclosporine A, a potent blocker of the MPTP, can improve mitochondrial function in HF. Methods: Cardiomyocytes were isolated from the left ventricular myocardium of 7 dogs with HF produced by intracoronary microembolizations and from 7 normal dogs. Cardiomyocytes were treated for 24 hours with cyclosporine A. Δ < eqid3 > m, cytochrome c oxidase protein expression, mitochondrial cytochrome c oxidase-dependent respiration (CDOR) and ATP synthesis were measured. Results: Δ < eqid4 > m, protein expression of cytochrome c oxidase, CDOR and the rate of ATP synthesis were decreased in HF compared to normal controls. Inhibition of MPTP in failing cardiomyocytes with low dose of cyclosporine A (0.2 μM) increased Δ < eqid5 > m, preserved expression of cytochrome c oxidase, improved CDOR and the rate of ATP synthesis. Conclusion: MPTP opening contributes to the loss of mitochondrial function observed in the failing heart. Inhibition of MPTP opening represents a potential therapeutic target for the treatment of HF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Sharov VG, Goussev AV, Lesch M, Goldstein S. Sabbah HN. Abnormal mitochondrial function in myocardium of dogs with chronic heart failure. J Mol Cell Cardiol 1998;30: 1757–1762.

    Article  CAS  PubMed  Google Scholar 

  2. Sharov VG, Todor AV, Silverman N, Goldstein S. Sabbah HN. Abnormal mitochondrial respiration in failed human myocardium. J Mol Cell Cardiol 2000;32:2361–2367.

    Article  CAS  PubMed  Google Scholar 

  3. Narula J, Pandey P, Arbustini E, Haider N, Narula N, Kolodgie FD, Dal Bellob B, Semigran MJ, Bielsa-Masdeu A, Dec GW, Israels S, Ballester M, Virmani R, Saxena S, Kharbanda S. Apoptosis in heart failure: release of cytochrome c from mitochondria and activation of caspase-3 in human cardiomyopathy. Proc Natl Acad Sci 1999;96:8144–8149.

    Article  CAS  PubMed  Google Scholar 

  4. Richter C, Ghafourifar P. Ceramide induced cytochrome c release from isolated mitochondria. Biochem Soe Symp 1999;66:27–31.

    CAS  Google Scholar 

  5. Schild L., Gellerich FN. Effect of the extramitochiondrial adenine nucleotide pool size on oxidative phosphorylation in isolated rat liver mitochondria. European Journal of Biochemistry 1998;252:508–512.

    Article  CAS  PubMed  Google Scholar 

  6. Weiss JN, Korge P, Honda HM, Ping P. Role of the mitochondrial permeability transition in myocardial disease. Circ Res 2003;93:292–301.

    Article  CAS  PubMed  Google Scholar 

  7. Dunne MJ. Protein phosphorylation is required for diazoxide to open ATP-sensitive potassium channel in insulin (RINm5F) secreting cells. FEBS Letters 1989;250:262–266.

    Article  CAS  PubMed  Google Scholar 

  8. Ohnuma Y, Miura T, Miki T, Tanno M, Kuno A, Tsuchida A, Shimamoto K. Opening of mitochondrial K(ATP) channel occurs downstream of OKC-epsilon activation in the mechanism of preconditioning. Am. J Physiol 2002;283:H440–H447.

    CAS  Google Scholar 

  9. Dos Santos P, Kowaltowski AJ, Laclau MN, Seetharaman S, Paucek P, Boudina S, Thambo JB, Tariosse L, Garlid KD. Mechanisms by which opening the mitochondrial ATP-sensitive K(+) channel protects the ischemic heart. Am J Physiol 2002;283:H284–H295.

    CAS  Google Scholar 

  10. Pain T, Yang XM, Critz SD, Yue Y, Nakano A, Liu GS, Heusch G, Cohen MV, Downey JM. Opening of mitochondrial K(ATP) channels triggers the preconditioned state by generating free radicals. Circ Res 2000;87:460–466.

    CAS  PubMed  Google Scholar 

  11. Dorman BH, Hebbar L, Hinton R, Roy R, Spinale FG. Preservation of myocyte contractile function after hypothermic cardioplegic arrest by activation of ATP-sensitive potassium channel. Circulation 1997;96:2376–2384.

    CAS  PubMed  Google Scholar 

  12. Xu M, Wang Y, Ayub A, Ashraf M. Mitochondrial K(ATP) channel activation reduces anoxic injury by restoring mitochondrial membrane potential. Am J Physiol 2001;281: H1295–H1303.

    CAS  Google Scholar 

  13. Eells JT, Henry MM, Gross GJ, Baker JE. Increased mitochondrial K(ATP) channel activity during chronic myocardial hypoxia: is cardioprotection mediated by improved bioenergetics? Circ Res. 2000;87:915–921.

    CAS  PubMed  Google Scholar 

  14. Sabbah HN, Stein PD, Kono T, Gheorghiade M, Levine TB, Jafri S, Hawkins ET, Goldstein S. A canine model of chronic heart failure produced by multiple sequential coronary microembolizations. Am J Physiol 1991;260:H1379–H1384.

    CAS  PubMed  Google Scholar 

  15. Lue WM, Boyden PA. Abnormal electrical properties of myocytes from chronically infarcted canine heart. Alterations in Vmax and the transient outward current. Circulation 1992;85:1175–1188.

    CAS  PubMed  Google Scholar 

  16. Sanchez H, Zoll J, Bigard X, Veksler V, Mettauer B, Lampert E, Lonsdorfer J, Ventura-Clapier R. Effect of cyclosporine A and its vehicle on cardiac and skeletal muscle mitochondria: relationship to efficacy of the respiratory chain. British J Pharmacol 2001;133:781–788.

    CAS  Google Scholar 

  17. Reers M, Smith TW, Chen LB. J-aggregate formation of a carbocyanine as a quantitative fluorescent indicator of membrane potential. Biochemistry 1991;30:4480–4486.

    Article  CAS  PubMed  Google Scholar 

  18. Lundin A, Anson J, Kau P. ATP axtractans neutralized by cyclodextrin. In: Bioluminescence and Chemiluminescence, Campbell AK, Kricka LJ, Stanley PE. (Eds.) (John Wiley & Sons, Chichester), pp. 399–402.

  19. Bers G, Garfin D. Protein and nucleic-acid blotting and immunobiochemical detection. Biotechniques 1985;3:276–288.

    CAS  Google Scholar 

  20. Gellerich FN, Khuchua ZA, Kuznetsov AV. Influence of the mitochondrial outer membrane and the binding of creatine kinase to the mitochondrial inner membrane on the compartmentation of adenine nucleotides in the intermembrane space of rat heart mitochondria. Biochimica et Biophysica Acta 1993;1140:327–334.

    CAS  PubMed  Google Scholar 

  21. Wallimann T, Wyss M, Brdiczka D, Nicolay K., Eppenberger HM. Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the ‘phosphocreatine circuit’ for cellular energy homeostasis. Biochemical Journal 1992;281(Pt 1): 21–40.

    CAS  PubMed  Google Scholar 

  22. Halestrap AP, Doran E, Gillespie JP, O'Toole A. Mitochondria and cell death. Biochemical Society of Transactions 2000;28:170–177.

    CAS  Google Scholar 

  23. Brustovetsky N, Jemmerson R, Dubinsky JM. Calcium-induced Cytochrome c release from rat brain mitochondria is altered by digitonin. Neuroscience Letters 2002;332:91–94.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hani N. Sabbah Ph.D..

Additional information

This study was supported by a grant from the National Heart, Lung, and Blood Institute PO1 HL074237-01.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharov, V.G., Todor, A.V., Imai, M. et al. Inhibition of Mitochondrial Permeability Transition Pores by Cyclosporine A Improves Cytochrome c Oxidase Function and Increases Rate of ATP Synthesis in Failing Cardiomyocytes. Heart Fail Rev 10, 305–310 (2005). https://doi.org/10.1007/s10741-005-7545-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-005-7545-1

Key Words

Navigation