Skip to main content

Advertisement

Log in

Increased expression of Gem after rat sciatic nerve injury

  • Original Paper
  • Published:
Journal of Molecular Histology Aims and scope Submit manuscript

Abstract

Gem belongs to the Rad/Gem/Kir subfamily of Ras-related GTPases, whose expression is induced in several cell types upon activation by extracellular stimuli. Two functions of Gem have been demonstrated, including regulation of voltage-gated calcium channel activity and inhibition of Rho kinase-mediated cytoskeletal reorganization, such as stress fiber formation and neurite retraction. Because of the essential relationship between actin reorganization and peripheral nerve regeneration, we investigated the spatiotemporal expression of Gem in a rat sciatic nerve crush (SNC) model. After never injury, we observed that Gem had a significant up-regulation from 1 day, peaked at day 5 and then gradually decreased to the normal level. At its peak expression, Gem expressed mainly in Schwann cells (SCs) and macrophages of the distal sciatic nerve segment, but had few colocalization in axons. In addition, the peak expression of Gem was in parallel with PCNA, and numerous SCs expressing Gem were PCNA positive. Thus, all of our findings suggested that Gem may be involved in the pathophysiology of sciatic nerve after SNC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

SNC:

Sciatic nerve crush

SCs:

Schwann cells

ROK:

Rho kinase

CK2:

Casein kinase 2

ERK:

Extracellular signal-regulated kinase

PAGE:

Polyacrylamide gel electrophoresis

ECL:

Enhanced chemiluminescence system

BSA:

Bovine serum albumin

DAB:

Diaminobenzidin

PCNA:

Proliferating cell nuclear antigen

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

References

  • Beguin P, Nagashima K, Gonoi T, Shibasaki T, Takahashi K, Kashima Y, Ozaki N, Geering K, Iwanaga T, Seino S (2001) Regulation of Ca2+ channel expression at the cell surface by the small G-protein kir/Gem. Nature 411:701–706

    Article  PubMed  CAS  Google Scholar 

  • Bourne HR, Sanders DA, McCormick F (1991) The GTPase superfamily: conserved structure and molecular mechanism. Nature 349:117–127

    Article  PubMed  CAS  Google Scholar 

  • Bruck W, Huitinga I, Dijkstra CD (1996) Liposome-mediated monocyte depletion during wallerian degeneration defines the role of hematogenous phagocytes in myelin removal. J Neurosci Res 46:477–484

    Article  PubMed  CAS  Google Scholar 

  • Charvet C, Canonigo AJ, Becart S, Maurer U, Miletic AV, Swat W, Deckert M, Altman A (2006) Vav1 promotes T cell cycle progression by linking TCR/CD28 costimulation to FOXO1 and p27kip1 expression. J Immunol 177:5024–5031

    PubMed  CAS  Google Scholar 

  • Chen L, Qin J, Cheng C, Niu S, Liu Y, Shi S, Liu H, Shen A (2008) Spatiotemporal expression of SSeCKS in injured rat sciatic nerve. Anat Rec (Hoboken) 291:527–537

    Article  CAS  Google Scholar 

  • Cohen L, Mohr R, Chen YY, Huang M, Kato R, Dorin D, Tamanoi F, Goga A, Afar D, Rosenberg N et al (1994) Transcriptional activation of a ras-like gene (kir) by oncogenic tyrosine kinases. Proc Natl Acad Sci USA 91:12448–12452

    Article  PubMed  CAS  Google Scholar 

  • Dorin D, Cohen L, Del Villar K, Poullet P, Mohr R, Whiteway M, Witte O, Tamanoi F (1995) Kir, a novel Ras-family G-protein, induces invasive pseudohyphal growth in Saccharomyces cerevisiae. Oncogene 11:2267–2271

    PubMed  CAS  Google Scholar 

  • Fawcett JW, Keynes RJ (1990) Peripheral nerve regeneration. Annu Rev Neurosci 13:43–60

    Article  PubMed  CAS  Google Scholar 

  • Finlin BS, Andres DA (1997) Rem is a new member of the Rad- and Gem/Kir Ras-related GTP-binding protein family repressed by lipopolysaccharide stimulation. J Biol Chem 272:21982–21988

    Article  PubMed  CAS  Google Scholar 

  • Finlin BS, Shao H, Kadono-Okuda K, Guo N, Andres DA (2000) Rem2, a new member of the Rem/Rad/Gem/Kir family of Ras-related GTPases. Biochem J 347(Pt 1):223–231

    Article  PubMed  CAS  Google Scholar 

  • Fu SY, Gordon T (1997) The cellular and molecular basis of peripheral nerve regeneration. Mol Neurobiol 14:67–116

    Article  PubMed  CAS  Google Scholar 

  • Griffin JW, George R, Ho T (1993) Macrophage systems in peripheral nerves. A review. J Neuropathol Exp Neurol 52:553–560

    Article  PubMed  CAS  Google Scholar 

  • Hokfelt T, Zhang X, Wiesenfeld-Hallin Z (1994) Messenger plasticity in primary sensory neurons following axotomy and its functional implications. Trends Neurosci 17:22–30

    Article  PubMed  CAS  Google Scholar 

  • Kiefer R, Kieseier BC, Stoll G, Hartung HP (2001) The role of macrophages in immune-mediated damage to the peripheral nervous system. Prog Neurobiol 64:109–127

    Article  PubMed  CAS  Google Scholar 

  • Konakahara S, Saitou M, Hori S, Nakane T, Murai K, Itoh R, Shinsaka A, Kohroki J, Kawakami T, Kajikawa M, Masuho Y (2011) A neuronal transmembrane protein LRFN4 induces monocyte/macrophage migration via actin cytoskeleton reorganization. FEBS Lett 585:2377–2384

    Article  PubMed  CAS  Google Scholar 

  • Konakahara S, Suzuki Y, Kawakami T, Saitou M, Kajikawa M, Masuho Y, Kohroki J (2012) A neuronal transmembrane protein LRFN4 complexes with 14-3-3s and NCK1 to induce morphological change in monocytic cells via Rac1-mediated actin cytoskeleton reorganization. FEBS Lett 586:2251–2259

    Article  PubMed  CAS  Google Scholar 

  • Konigsmark BW (1970) Methods for the counting of Neurons. In: Nauta WJH, Ebbesson SOE (eds) Contemporary research methods in neuroanatomy. Springer-Verlag, New York, pp 315–340

  • Kury P, Stoll G, Muller HW (2001) Molecular mechanisms of cellular interactions in peripheral nerve regeneration. Curr Opin Neurol 14:635–639

    Article  PubMed  CAS  Google Scholar 

  • Le Bellego F, Fabre S, Pisselet C, Monniaux D (2005) Cytoskeleton reorganization mediates alpha6beta1 integrin-associated actions of laminin on proliferation and survival, but not on steroidogenesis of ovine granulosa cells. Reprod Biol Endocrinol 3:19

    Article  PubMed  Google Scholar 

  • Leone A, Mitsiades N, Ward Y, Spinelli B, Poulaki V, Tsokos M, Kelly K (2001) The Gem GTP-binding protein promotes morphological differentiation in neuroblastoma. Oncogene 20:3217–3225

    Article  PubMed  CAS  Google Scholar 

  • Lepelletier Y, Moura IC, Hadj-Slimane R, Renand A, Fiorentino S, Baude C, Shirvan A, Barzilai A, Hermine O (2006) Immunosuppressive role of semaphorin-3A on T cell proliferation is mediated by inhibition of actin cytoskeleton reorganization. Eur J Immunol 36:1782–1793

    Article  PubMed  CAS  Google Scholar 

  • Maguire J, Santoro T, Jensen P, Siebenlist U, Yewdell J, Kelly K (1994) Gem: an induced, immediate early protein belonging to the Ras family. Science 265:241–244

    Article  PubMed  CAS  Google Scholar 

  • Mattii L, Fazzi R, Moscato S, Segnani C, Pacini S, Galimberti S, D’Alessandro D, Bernardini N, Petrini M (2004) Carboxy-terminal fragment of osteogenic growth peptide regulates myeloid differentiation through RhoA. J Cell Biochem 93:1231–1241

    Article  PubMed  CAS  Google Scholar 

  • Mirsky R, Jessen KR (1996) Schwann cell development, differentiation and myelination. Curr Opin Neurobiol 6:89–96

    Article  PubMed  CAS  Google Scholar 

  • Mueller M, Leonhard C, Wacker K, Ringelstein EB, Okabe M, Hickey WF, Kiefer R (2003) Macrophage response to peripheral nerve injury: the quantitative contribution of resident and hematogenous macrophages. Lab Invest 83:175–185

    PubMed  Google Scholar 

  • Papakonstanti EA, Stournaras C (2008) Cell responses regulated by early reorganization of actin cytoskeleton. FEBS Lett 582:2120–2127

    Article  PubMed  CAS  Google Scholar 

  • Pollard TD, Cooper JA (2009) Actin, a central player in cell shape and movement. Science 326:1208–1212

    Article  PubMed  CAS  Google Scholar 

  • Provenzano C, Gallo R, Carbone R, Di Fiore PP, Falcone G, Castellani L, Alema S (1998) Eps8, a tyrosine kinase substrate, is recruited to the cell cortex and dynamic F-actin upon cytoskeleton remodeling. Exp Cell Res 242:186–200

    Article  PubMed  CAS  Google Scholar 

  • Reynet C, Kahn CR (1993) Rad: a member of the Ras family overexpressed in muscle of type II diabetic humans. Science 262:1441–1444

    Article  PubMed  CAS  Google Scholar 

  • Salzer JL, Bunge RP (1980) Studies of Schwann cell proliferation. I. An analysis in tissue culture of proliferation during development, Wallerian degeneration, and direct injury. J Cell Biol 84:739–752

    Article  PubMed  CAS  Google Scholar 

  • Scherer SS (1997) The biology and pathobiology of Schwann cells. Curr Opin Neurol 10:386–397

    Article  PubMed  CAS  Google Scholar 

  • Taskinen HS, Roytta M (2000) Increased expression of chemokines (MCP-1, MIP-1alpha, RANTES) after peripheral nerve transection. J Peripher Nerv Syst 5:75–81

    Article  PubMed  CAS  Google Scholar 

  • Ward Y, Yap SF, Ravichandran V, Matsumura F, Ito M, Spinelli B, Kelly K (2002) The GTP binding proteins Gem and Rad are negative regulators of the Rho–Rho kinase pathway. J Cell Biol 157:291–302

    Article  PubMed  CAS  Google Scholar 

  • Ward Y, Spinelli B, Quon MJ, Chen H, Ikeda SR, Kelly K (2004) Phosphorylation of critical serine residues in Gem separates cytoskeletal reorganization from down-regulation of calcium channel activity. Mol Cell Biol 24:651–661

    Article  PubMed  CAS  Google Scholar 

  • Yan M, Cheng C, Shao X, Qian J, Shen A, Xia C (2008) Expression change of beta-1,4 galactosyltransferase I, V mRNAs and Galbeta1,4GlcNAc group in rat sciatic nerve after crush. J Mol Histol 39:317–328

    Article  PubMed  CAS  Google Scholar 

  • Yue J, Shukla R, Accardi R, Zanella-Cleon I, Siouda M, Cros MP, Krutovskikh V, Hussain I, Niu Y, Hu S, Becchi M, Jurdic P, Tommasino M, Sylla BS (2011) Cutaneous human papillomavirus type 38 E7 regulates actin cytoskeleton structure for increasing cell proliferation through CK2 and the eukaryotic elongation factor 1A. J Virol 85:8477–8494

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (No.81171140, No.21077061 and No. 31071288); Natural Science Foundation of Jiangsu province (No.BK2009161); A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xingxing Gu or Guangfei Xu.

Additional information

Youhua Wang and Xinghai Cheng are contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Cheng, X., Zhou, Z. et al. Increased expression of Gem after rat sciatic nerve injury. J Mol Hist 44, 27–36 (2013). https://doi.org/10.1007/s10735-012-9459-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10735-012-9459-2

Keywords

Navigation