Skip to main content
Log in

Expression of EGR-1 in a subset of olfactory bulb dopaminergic cells

  • Brief Communication
  • Published:
Journal of Molecular Histology Aims and scope Submit manuscript

Abstract

In the adrenal medulla, binding of the immediate early gene (IEG) proteins, EGR-1 (ZIF-268/KROX-24/NGFI-A) and AP-1, to the tyrosine hydroxylase (Th) proximal promoter mediate inducible Th expression. The current study investigated the potential role of EGR-1 in inducible Th expression in the olfactory bulb (OB) since IEGs bound to the AP-1 site in the Th proximal promoter are also necessary for activity-dependent OB TH expression. Immunohistochemical analysis of a naris-occluded mouse model of odor deprivation revealed weak EGR-1 expression levels in the OB glomerular layer that were activity-dependent. Immunofluorescence analysis indicated that a majority of glomerular cells expressing EGR-1 also co-expressed TH, but only small subset of TH-expressing cells contained EGR-1. By contrast, granule cells, which lack TH, exhibited EGR-1 expression levels that were unchanged by naris closure. Together, these finding suggest that EGR-1 mediates activity-dependent TH expression in a subset of OB dopaminergic neurons, and that there is differential regulation of EGR-1 in periglomerular and granule cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

References

  • Alonso M, Viollet C, Gabellec MM, Meas-Yedid V, Olivo-Marin JC, Lledo PM (2006) Olfactory discrimination learning increases the survival of adult-born neurons in the olfactory bulb. J Neurosci 26:10508–10513. doi:10.1523/JNEUROSCI.2633-06.2006

    Article  CAS  PubMed  Google Scholar 

  • Baker H, Kawano T, Margolis FL, Joh TH (1983) Transneuronal regulation of tyrosine hydroxylase expression in olfactory bulb of mouse and rat. J Neurosci 3:69–78

    CAS  PubMed  Google Scholar 

  • Baker H, Morel K, Stone DM, Maruniak JA (1993) Adult naris closure profoundly reduces tyrosine hydroxylase expression in mouse olfactory bulb. Brain Res 614:109–116. doi:10.1016/0006-8993(93)91023-L

    Article  CAS  PubMed  Google Scholar 

  • Baker H, Liu N, Chun HS, Saino S, Berlin R, Volpe B, Son JH (2001) Phenotypic differentiation during migration of dopaminergic progenitor cells to the olfactory bulb. J Neurosci 21:8505–8513

    CAS  PubMed  Google Scholar 

  • Cave JW, Baker H (2008) Dopamine systems in the forebrain. In: Pasterkamp RJ, Smidt MP, Burbach JPH (eds) Development and engineering of dopamine neurons. Landes BioScience, Austin

    Google Scholar 

  • Inaki K, Takahashi YK, Nagayama S, Mori K (2002) Molecular-feature domains with posterodorsal-anteroventral polarity in the symmetrical sensory maps of the mouse olfactory bulb: mapping of odourant-induced Zif268 expression. Eur J NeuroSci 15:1563–1574. doi:10.1046/j.1460-9568.2002.01991.x

    Article  PubMed  Google Scholar 

  • Inoue T, Ota M, Ogawa M, Mikoshiba K, Aruga J (2007) Zic1 and Zic3 regulate medial forebrain development through expansion of neuronal progenitors. J Neurosci 27:5461–5473. doi:10.1523/JNEUROSCI.4046-06.2007

    Article  CAS  PubMed  Google Scholar 

  • Johnson BA, Woo CC, Duong H, Nguyen V, Leon M (1995) A learned odor evokes an enhanced Fos-like glomerular response in the olfactory bulb of young rats. Brain Res 699:192–200. doi:10.1016/0006-8993(95)00896-X

    Article  CAS  PubMed  Google Scholar 

  • Kohwi M, Osumi N, Rubenstein JL, Alvarez-Buylla A (2005) Pax6 is required for making specific subpopulations of granule and periglomerular neurons in the olfactory bulb. J Neurosci 25:6997–7003. doi:10.1523/JNEUROSCI.1435-05.2005

    Article  CAS  PubMed  Google Scholar 

  • Liu N, Cigola E, Tinti C, Jin BK, Conti B, Volpe BT, Baker H (1999) Unique regulation of immediate early gene and tyrosine hydroxylase expression in the odor-deprived mouse olfactory bulb. J Biol Chem 274:3042–3047. doi:10.1074/jbc.274.5.3042

    Article  CAS  PubMed  Google Scholar 

  • Mandairon N, Sacquet J, Garcia S, Ravel N, Jourdan F, Didier A (2006) Neurogenic correlates of an olfactory discrimination task in the adult olfactory bulb. Eur J NeuroSci 24:3578–3588. doi:10.1111/j.1460-9568.2006.05235.x

    Article  PubMed  Google Scholar 

  • Min N, Joh TH, Corp ES, Baker H, Cubells JF, Son JH (1996) A transgenic mouse model to study transsynaptic regulation of tyrosine hydroxylase gene expression. J Neurochem 67:11–18

    Article  CAS  PubMed  Google Scholar 

  • Nakashima A, Ota A, Sabban EL (2003) Interactions between Egr1 and AP1 factors in regulation of tyrosine hydroxylase transcription. Brain Res Mol Brain Res 112:61–69. doi:10.1016/S0169-328X(03)00047-0

    Article  CAS  PubMed  Google Scholar 

  • Papanikolaou NA, Sabban EL (2000) Ability of Egr1 to activate tyrosine hydroxylase transcription in PC12 cells. Cross-talk with AP-1 factors. J Biol Chem 275:26683–26689

    CAS  PubMed  Google Scholar 

  • Sabban EL (1997) Control of tyrosine hydroxylase gene expression in chromaffin and PC12 cells. Semin Cell Dev Biol 8:101–111. doi:10.1006/scdb.1996.0129

    Article  CAS  PubMed  Google Scholar 

  • Saino-Saito S, Sasaki H, Volpe BT, Kobayashi K, Berlin R, Baker H (2004) Differentiation of the dopaminergic phenotype in the olfactory system of neonatal and adult mice. J Comp Neurol 479:389–398. doi:10.1002/cne.20320

    Article  PubMed  Google Scholar 

  • Saino-Saito S, Cave JW, Akiba Y, Sasaki H, Goto K, Kobayashi K, Berlin R, Baker H (2007) ER81 and CaMKIV identify anatomically and phenotypically defined subsets of mouse olfactory bulb interneurons. J Comp Neurol 502:485–496. doi:10.1002/cne.21293

    Article  CAS  PubMed  Google Scholar 

  • Trocme C, Sarkis C, Hermel JM, Duchateau R, Harrison S, Simonneau M, Al-Shawi R, Mallet J (1998) CRE and TRE sequences of the rat tyrosine hydroxylase promoter are required for TH basal expression in adult mice but not in the embryo. Eur J NeuroSci 10:508–521. doi:10.1046/j.1460-9568.1998.00059.x

    Article  CAS  PubMed  Google Scholar 

  • Vergano-Vera E, Yusta-Boyo MJ, de Castro F, Bernad A, de Pablo F, Vicario-Abejon C (2006) Generation of GABAergic and dopaminergic interneurons from endogenous embryonic olfactory bulb precursor cells. Development 133:4367–4379. doi:10.1242/dev.02601

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by NIH R01DC008955. Dr. Esther Sabban (New York Medical College) generously provided the EGR-1 antibody.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John W. Cave.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akiba, N., Jo, S., Akiba, Y. et al. Expression of EGR-1 in a subset of olfactory bulb dopaminergic cells. J Mol Hist 40, 151–155 (2009). https://doi.org/10.1007/s10735-009-9217-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10735-009-9217-2

Keywords

Navigation