Skip to main content
Log in

Phytochelatin synthesis and cadmium localization in wild type of Arabidopsis thaliana

  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

AlthoughArabidopsis thaliana is known as a model plant, in molecular studies, as well as heavy metal tolerance of higher plants, there have been no detailed studies of its cadmium accumulation, tolerance and cellular distribution in a wild type of this species. In hydroponic experiments the wild type of A. thaliana (L.) Heynh cv. Columbia plants grew at cadmium concentrations varying from 5 to 100 μM with phytotoxicity symptoms depending on the concentration and time of application. The concentration of cadmium in roots and shoots increased from 0.28 and 0.08 mg g−1 d.wt at 5 μM Cd treatment after 7 days to 0.82 and 0.85 mg g−1 d.wt at 100 μM Cd treatment after 14 days, respectively. Most of the cadmium (69–88% of its total pool) was found in shoot. Cd application induced the biosynthesis of phytochelatins (PCs) in root and shoot tissues. Studies with buthionine sulfoximine [BSO, specific inhibitor of glutathione (GSH) synthesis] supported the presence of Cd–phytochelatin complexes and their role in Cd detoxification and tolerance in wild type of A. thaliana. Cellular distribution of cadmium was examined using energy-dispersive X-ray micro-analysis. Particularly interesting was the observation of cadmium localized in the root pericycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ager F.J., Ynsa M.D., Domínguez-Solís J.R., Gotor C., Respaldiza M.A. and Romero L.C. 2002. Cadmium localization and quanti cation in the plant Arabidopsis thaliana using micro-PIXE. NIM B 189:494–498.

    Google Scholar 

  • Ager F.J., Ynsa M.D., Domínguez-Solís J.R., López-Martín M.C., Gotor C. and Romero L.C.2003. Nuclear micro-probe analysis of Arabidopsis thaliana leaves. NIM B 210:401–406.

    Google Scholar 

  • Cazalé A.-C. and Clemens S. 2001. Arabidopsis thaliana ex-presses a second functional phytochelatin synthase. FEBS Lett. 507:215–219.

    Google Scholar 

  • Cobbett C. and Goldsbrough P. 2002. Phytochelatins and me-tallothioneins:roles in heavy metal detoxi cation and homeostasis. Annu. Rev. Plant Biol. 53:159–182.

    Google Scholar 

  • Gussarsson M., Asp H., Adalsteinsson S. and Jensén P.1996. Enhancement of cadmium effects on growth and nutrient composition of birch (Betula pendula) by buthionine sulph-oximine (BSO). J. Exp. Bot. 47:211–215.

    Google Scholar 

  • Gutíerrez-Alcala ´G., Gotor C., Meyer A.J., Fricker M., Vega J.M. and Romero L.C. 2000. Glutathione biosynthesis in Arabidopsis trichome cells. Proc. Natl. Acad. Sci. USA 97: 11108–11113.

    Google Scholar 

  • Ha S.-B., Smith A.P., Howden R., Dietrich W.M. and Bugg S. et al. 1999. Phytochelatin synthase genes from Arabidopsis and the yeast, Schizosacccharomyces pombe. Plant Cell 11: 1153–1164.

    Google Scholar 

  • Hoagland D.R. and Arnon D.J. 1959. The water-culture method of growing plants without soil. Calif. Agr. Expt. Sta. Circ. 347:26–29.

    Google Scholar 

  • Howden R., Andersen C.R., Goldsbrough P.B. and Cobbett C.S. 1995a. A cadmium-sensitive,glutathione-de cient mu-tant of Arabidopsis thaliana. Plant Physiol. 107:1067–1073.

    Google Scholar 

  • Howden R. and Cobbett C.S.1992. Cadmium-sensitive mu-tants of Arabidopsis thaliana. Plant Physiol. 99:100–107.

    Google Scholar 

  • Howden R., Goldsbrough P.B., Andersen C.R. and Cobbett C.S. 1995b. Cadmium-sensitive, cad1 mutants of Arabidopsis thaliana are phytochelatin deffcient. Plant Physiol. 107:1059–1066.

    Google Scholar 

  • Khan D.H., Duckett J.G., Frankland B. and Kirkham J.B. 1984. An X-ray microanalytical study of the distribution of cadmium in roots of Zea mays L.J. Plant Physiol. 115:19–28.

    Google Scholar 

  • De Knecht J.A. 1994. Cadmium Tolerance and Phytochelatin Production in Silene vulgaris. Doctorate thesis, Vrije Uni-versiteit, Amsterdam, The Netherlands.

    Google Scholar 

  • Küpper H., Lombi E., Zhao F.-J. and McGrath S.P.2000. Cellular compartmentation of cadmium and zinc in relation to other elements in the hyperaccumulator Arabidopsis hal-leri. Planta 212:75–84.

    Google Scholar 

  • Navarro S.X., Dziewiatkoski M.P. and Enyedi A.J. 1999. Iso-lation of cadmium excluding mutants of Arabidopsis thaliana using a vertical mesh transfer system and ICP-MS. J.Envi-ron. Sci. Health. A34:1797–1813.

    Google Scholar 

  • Punz W.F. and Sieghardt H. 1993. The response of roots of herbaceous plant species to heavy metals. Environ. Exp. Bot. 33:85–98.

    Google Scholar 

  • Reese R.N. and Wagner G.J. 1987. Effects of buthionine sul-phoximine on Cd-binding peptide levels in suspension-cultured tobacco cells treated with Cd, Zn, or Cu. Plant Physiol. 84:574–577.

    Google Scholar 

  • Rennenberg H. 1982. Glutathione metabolism and possible biological roles in higher plants. Phytochemistry 21:2771–2778.

    Google Scholar 

  • Sanitàdi Toppi L. and Gabbrielli R. 1999. Response to cadmium in higher plants. Environ. Exp. Bot. 41:105–130.

    Google Scholar 

  • Schat H. and Ten Bookum W.M. 1992. Genetic control of copper tolerance in Silene vulgaris. Heredity 68:219–229.

    Google Scholar 

  • Schat H., Llugany M., Vooijs R., Hartey-Whitaker J. and Bleeker P.M. 2002. The role of phytochelatins in constitutive and adaptive heavy metal tolerances in hyperaccumulator and non-hyperaccumulator metallophytes. J. Exp. Bot. 379: 2381–2392.

    Google Scholar 

  • Steffens J.C., Hunt D.F. and Williams B.G. 1986. Accumula-tion of non-protein metal-binding polypeptides (γ-glutamyl-cysteinyl)n-glycine in selected cadmium-resistant tomato cells. J. Biol. Chem. 261:13879–13882.

    Google Scholar 

  • Tukendorf A. and Rauser W.E. 1990. Changes in glutathione and phytochelatins in roots of maize seedlings exposed to cadmium. Plant Sci. 70:155–166.

    Google Scholar 

  • Vatamaniuk O.K., Mari S., Lu Y.-P. and Rea P.A. 1999. At-PCS1, a phytochelatin synthase from Arabidopsis:isolation and in vitro reconstitution. Proc. Natl. Acad. Sci. USA 96:7110–7115.

    Google Scholar 

  • Vazquez M.D., Barceló J., Poschenrieder Ch., Mádico J., Hatton P., Baker A.J.M. and Cope G.H. 1992. Localization of zinc and cadmium in Thlaspi caerulescens (Brassicaceae ), a metallophyte that can hyper accumulate both metals. J. Plant Physiol. 140:350–355.

    Google Scholar 

  • Wójcik M. and Tukendorf A. 1999. Cd-tolerance of maize, rye and wheat seedlings. Acta Physiol. Plant. 21:99–107.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wójcik, M., Tukiendorf, A. Phytochelatin synthesis and cadmium localization in wild type of Arabidopsis thaliana . Plant Growth Regulation 44, 71–80 (2004). https://doi.org/10.1007/s10725-004-1592-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-004-1592-9

Navigation