Skip to main content

Advertisement

Log in

Multimeric bivalent immunogens from recombinant tetanus toxin HC fragment, synthetic hexasaccharides, and a glycopeptide adjuvant

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Using recombinant tetanus toxin HC fragment (rTT-HC) as carrier, we prepared multimeric bivalent immunogens featuring the synthetic hexasaccharide fragment of O-PS of Vibrio cholerae O:1, serotype Ogawa, in combination with either the synthetic hexasaccharide fragment of O-PS of Vibrio cholerae O:1, serotype Inaba, or a synthetic disaccharide tetrapeptide peptidoglycan fragment as adjuvant. The conjugation reaction was effected by squaric acid chemistry and monitored in virtually real time by SELDI-TOF MS. In this way, we could prepare well-defined immunogens with predictable carbohydrate–carrier ratio, whose molecular mass and the amount of each saccharide attached could be independently determined. The ability to prepare such neoglycoconjugates opens unprecedented possibilities for preparation of conjugate vaccines for bacterial diseases from synthetic carbohydrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2

Similar content being viewed by others

Abbreviations

TT:

Tetanus toxoid

rTT-HC :

Recombinant tetanus toxin fragment C

HC :

Tetanus toxin fragment C

O-PS:

O-specific Polysaccharides

SELDI-TOF-MS:

Surface-enhanced laser desorption time-of-flight mass spectrometry

BSA:

Bovine serum albumin

NIS:

N-Iodosuccinimide

PG:

Peptidoglycan

References

  1. Dick Jr., W.E., Beurret, M.: Glycoconjugates of bacterial carbohydrate antigens. In: Cruse, J.M. Lewis Jr. R.E. (eds.) Conjugate vaccines, pp. 48–114. Krager, Basel (1989)

    Google Scholar 

  2. Jones, C.: Vaccines based on the cell surface carbohydrates of pathogenic bacteria. Ann. Brazil. Acad. Sci. 77, 293–324 (2005)

    CAS  Google Scholar 

  3. Vliegenthart, J.F.G.: Carbohydrate based vaccines. FEBS Lett. 580, 2945–2950 (2006)

    Article  PubMed  CAS  Google Scholar 

  4. Louch, H.A., Buczko, E.S., Woody, M.A., et al.: Identification of a binding site for ganglioside on the receptor binding domain of tetanus toxin. Biochemistry 41, 13644–13652 (2002)

    Article  PubMed  CAS  Google Scholar 

  5. Helting, T.B., Zwisler, O.: Structure of tetanus toxin. I. Breakdown of the toxin molecule and discrimination between polypeptide fragments. J. Biol. Chem. 252, 187–193 (1977)

    PubMed  CAS  Google Scholar 

  6. Helting, T.B., Zwisler, O., Wiegandt, H.: Structure of tetanus toxin. II. Toxin binding to ganglioside. J. Biol. Chem. 252, 194–198 (1977)

    PubMed  CAS  Google Scholar 

  7. Umland, T.C., Wingert, L.M., Swaminathan, S., et al.: Structure of the receptor binding fragment HC of tetanus neurotoxin. Nat. Struct. Biol. 4, 788–792 (1997)

    Article  PubMed  CAS  Google Scholar 

  8. Makoff, A.J., Ballantine, S.P., Smallwood, A.E., et al.: Expression of tetanus toxin fragment C in E. coli: its purification and potential as vaccine. Bio/Technology 7, 1043–1046 (1989)

    CAS  Google Scholar 

  9. Fairweather, N.F., Chatfield, S.N., Makoff, A.J., et al.: Oral vaccination of mice against tetanus by use of a live attenuated Salmonella carrier. Infect. Immun. 58, 1323–1326 (1990)

    PubMed  CAS  Google Scholar 

  10. Tregoning, J.S., Nixon, P., Kuroda, H., et al.: Expression of tetanus toxin fragment C in tobacco choloroplasts. Nucleic Acid Res. 31, 1174–1179 (2003)

    Article  PubMed  CAS  Google Scholar 

  11. Anderson, R., Gao, X.M., Papakonstantinopoulou, A., et al.: Immune response in mice following immunization with DNA encoding fragment C of tetanus toxin. Infect. Immun. 64, 3168–3173 (1996)

    PubMed  CAS  Google Scholar 

  12. Gustafsson, B., Whitmore, E., Tiru, M.: Neutralization of tetanus toxin by human monoclonal antibodies directed against tetanus toxin fragment C. Hybridoma 12, 699–708 (1993)

    Article  PubMed  CAS  Google Scholar 

  13. Zhang, J., Yergey, A., Kowalak, J., et al.: Studies towards neoglycoconjugates from the monosaccharide determinant of Vibrio cholerae O:1, serotype Ogawa using the diethyl squarate reagent. Carbohydr. Res. 313, 15–20 (1998)

    Article  PubMed  CAS  Google Scholar 

  14. Zhang, J., Kováč, P.: Studies on vaccines against cholera. Synthesis of neoglycoconjugates from the hexasaccharide determinant of Vibrio cholerae O:1, serotype Ogawa, by single-point attachment or by attachment of the hapten in the form of clusters. Carbohydr. Res. 321, 157–167 (1999)

    Article  PubMed  CAS  Google Scholar 

  15. Chernyak, A., Karavanov, A., Ogawa, Y., et al.: Conjugating oligosaccharides to proteins by squaric acid diester chemistry; rapid monitoring of the progress of conjugation, and recovery of the unused ligand. Carbohydr. Res. 330, 479–486 (2001)

    Article  PubMed  CAS  Google Scholar 

  16. Saksena, R., Chernyak, A., Karavanov, A., et al.: Conjugating low molecular mass carbohydrates to proteins. 1. Monitoring the progress of conjugation. In: Lee, Y. C., Lee, R. (eds.) Methods in enzymology, pp. 125–139. Academic Press, (2003)

  17. Hou, S-j., Saksena, R., Kováč, P.: Preparation of glycoconjugates by dialkyl squarate chemistry revisited. Carbohydr. Res. 343, 196–210 (2008)

    Article  PubMed  CAS  Google Scholar 

  18. Tietze, L.F., Schröter, C., Gabius, S., et al.: Conjugation of p-aminophenyl glycosides with squaric acid diester to a carrier protein and the use of neoglycoprotein in the histochemical detection of lectins. Bioconjugate Chem. 2, 148–153 (1991)

    Article  CAS  Google Scholar 

  19. Saksena, R., Ma, X., Kováč, P.: One-pot preparation of a series of glycoconjugates with predetermined antigen-carrier ratio from oligosaccharides that mimic the O-PS of Vibrio cholerae O:1, serotype Ogawa. Carbohydr. Res. 338, 2591–2603 (2003)

    Article  PubMed  CAS  Google Scholar 

  20. Ma, X., Saksena, R., Chernyak, A., et al.: Neoglycoconjugates from synthetic tetra- and hexasaccharides that mimic the terminus of the O-PS of Vibrio cholerae O:1, serotype Inaba. Org. Biomol. Chem. 1, 775–784 (2003)

    Article  PubMed  CAS  Google Scholar 

  21. Rollenhagen, J.E., Kalsy, A., Saksena, R., et al.: Transcutaneous immunization with a neoglycoconjugate containing a V. colerae hexasaccharide derived from V. cholerae O1 Ogawa lipopolysaccharide bound to a protein carrier. Am. J. Trop. Med. Hyg. Suppl. 75, 84–85 (2006)

    Google Scholar 

  22. Saksena, R., Adamo, R., Kováč, P.: Studies towards a conjugate vaccine for anthrax. Synthesis and characterization of anthrose [4, 6-dideoxy-4-(3-hydroxy-3-methylbutanamido)-2-O-methyl-D-glucopyranose] and its methyl glycosides. Carbohydr. Res. 340, 1591–1600 (2005)

    Article  PubMed  CAS  Google Scholar 

  23. Saksena, R., Ma, X., Wade, T.K., et al.: Length of the linker and the interval between immunizations infuences the efficacy of Vibrio cholerae O:1 Ogawa hexasaccharide neoglycoconjugates. FEMS Immunol. Med. Microbiol. 46, 116–128 (2006)

    Article  Google Scholar 

  24. Saksena, R., Ma, X., Wade, T.K., et al.: Effect of saccharide length on the immunogenicity of neoglycoconjugates from synthetic fragments of the O-SP of Vibrio cholerae O:1, serotype Ogawa. Carbohydr. Res. 340, 2256–2269 (2005)

    Article  PubMed  CAS  Google Scholar 

  25. Chernyak, A., Kondo, S., Wade, T.K., et al.: Induction of protective immunity by synthetic Vibrio Cholerae Hexasaccharide derived from Vibrio cholerae O:1 Ogawa lipopolysaccharide bound to a protein carrier. J. Infect. Dis. 185, 950–962 (2002)

    Article  PubMed  CAS  Google Scholar 

  26. Meeks, M.D., Saksena, R., Ma, X., et al.: Synthetic fragments of Vibrio cholerae O:1 Inaba O-SP bound to a protein carrier are immunogenic in mice but do not induce protective antibodies. Infect. Immun. 72, 4090–4101 (2004)

    Article  PubMed  CAS  Google Scholar 

  27. Adamo, R., Kováč, P.: Glycosylation under thermodynamic control: synthesis of the di- and the hexasaccharide fragments of the O-SP of Vibrio Cholerae O:1 serotype Ogawa from fully functionalized building blocks. Eur. J. Org. Chem. 988-2000 (2007)

  28. Ogawa, Y., Lei, P.-S., Kováč, P.: Synthesis of ligands related to the Vibrio cholerae O-specific antigen. Part 12. Synthesis of eight glycosides of hexasaccharide fragments representing the terminus of the O-polysaccharide of Vibrio cholerae O:1, serotype Inaba and Ogawa, bearing aglycons suitable for linking to proteins. Carbohydr. Res. 293, 173–194 (1996)

    Article  PubMed  CAS  Google Scholar 

  29. Ravenscroft, N., Jones, C.: Glycoconjugate vaccines. Curr. Opin. Drug Discovery Dev. 3, 222–231 (2000)

    CAS  Google Scholar 

  30. Fujimoto, Y., Konishi, Y., Kubo, O., et al.: Tet. Lett. accepted for publication (2009)

  31. Inamura, S., Fujimoto, Y., Kawasaki, A., et al.: Synthesis of peptidoglycan fragments and evaluation of their biological activity. Org Biomol Chem 4, 232–242 (2006)

    Article  PubMed  CAS  Google Scholar 

  32. Tomasic, J., Hanzl-Dujmovic, I., Spoljar, B., et al.: Comparative study of the effects of peptidoglycan monomer and structurally related adamantyltripeptides on humoral immune response to ovalbumin in the mouse. Vaccine 18, 1236–1243 (2000)

    Article  PubMed  CAS  Google Scholar 

  33. Kanneganti, T.D., Lamkanfi, M., Núñez, G.: Intracellular NOD-like receptors in host defese and disease. Immunity 27, 549–559 (2007)

    Article  PubMed  CAS  Google Scholar 

  34. McKee, A.S., Munks, M.W., Marrack, P.: How do adjuvants work? Important considerations for new generation adjuvants. Immunity 27, 687–690 (2007)

    Article  PubMed  CAS  Google Scholar 

  35. Takada, H., Nagao, S., Kotani, S., et al.: Mitogenic effects of bacterial cell walls and their components on murine splenocytes. Biken J. 23, 61–68 (1980)

    PubMed  CAS  Google Scholar 

  36. Kamath, V.P., Diedrich, P., Hindsgaul, O.: Use of diethyl squarate for the coupling of oligosaccharide amines to carrier proteins and characterization of the resulting neoglycoproteins by MALDI-TOF mass spectrometry. Glycoconjugate J. 13, 315–319 (1996)

    Article  CAS  Google Scholar 

  37. Patel, A., Lindhorst, T. K.: Synthesis of “mixed type” oligosaccharide mimetics based on a carbohydrate scaffold. Eur. J. Org. Chem. 79–86 (2002)

  38. Grigalevicius, S., Chierici, S., Renaudet, O., et al.: Assembly and immunological evaluation of multiepitopic glycoconjugates bearing clustered Tn antigen as synthetic anticancer vaccines. Bioconjugate Chem. 16, 1149–1159 (2005)

    Article  CAS  Google Scholar 

  39. Renaudet, O., Dumy, P.: Chemoselectively template-assembled glycoconjugates as mimics for multivalent presentation of carbohydrates. Org. Lett. 5, 243–246 (2003)

    Article  PubMed  CAS  Google Scholar 

  40. Mutter, M., Dumy, P., Garrouste, P., et al.: Template assembled synthetic proteins (TASP) as functional mimetics of proteins. Angew. Chem. Int. Ed. Engl. 35, 1481–1485 (1996)

    Article  Google Scholar 

  41. Tuchscherer, G., Lehmann, C., Mathieu, M.: New protein mimetics: the zinc finger motif as a locked-in tertiary fold. Angew. Chem. Int. Ed. Engl. 37, 2990–2993 (1998)

    Article  CAS  Google Scholar 

  42. Kale, R.R., Clancy, C.M., Vermillion, R.M., et al.: Synthesis of soluble multivalent glycoconjugates that target the HC region of botulinum neurotoxin A. Bioorg. Med. Chem. Lett. 17, 2459–2464 (2007)

    Article  PubMed  CAS  Google Scholar 

  43. Dumy, P., Eggleston, I.M., Cervigni, S., et al.: A convenient synthesis of cyclic peptides as regioselectively addressable functionalized templates (RAFT). Tetrahedron Lett. 36, 1255–1258 (1995)

    Article  CAS  Google Scholar 

  44. Peters, T., Bundle, D.R.: Synthetic antigenic determinants of the Brucella A polysaccharide: A disaccharide thioglycoside for block synthesis of pentasaccharide and lower homologues of a 1, 2-linked 4, 6-dideoxy-4-formamido-α-D-mannose. Can. J. Chem. 67, 491–496 (1989)

    Article  CAS  Google Scholar 

  45. Gast, J.C., Atalla, R.H., McKelvey, R.D.: The 13C N.M.R. spectra of the xylo- and cello-oligosaccharides. Carbohydr. Res. 84, 137–146 (1980)

    Article  CAS  Google Scholar 

  46. Kováč, P., Hirsch, J.: Alternative syntheses of methylated sugars, Part XXIV. Sequential synthesis and 13C-NMR spectra of methyl β-glycosides of β-(1-4)-D-xylo-oligo-saccharides. Carbohydr. Res. 100, 177–193 (1982)

    Article  CAS  Google Scholar 

  47. Friebolin, H.: Basic one- and two dimensional NMR spectroscopy. VCH, New York (1993)

    Google Scholar 

  48. Tietze, L. F., Fischer, R., Guder, H. J., et al.: Development of selective cytostatica for cancer therapy. Syntheis of acetal-β-glucosides from cytotoxic aldehydes. Justus Liebigs Ann. Chem. 847–856 (1987)

  49. Fairweather, N.F., Lyness, V.A., Pickard, D.J., et al.: Cloning, nucleotide sequencing, and expression of tetanus toxin fragment C in Escherichia coli. J. Bacteriol. 165, 21–27 (1986)

    PubMed  CAS  Google Scholar 

  50. Emsley, P., Fotinou, C., Black, I., et al.: The structures of the HC fragment of tetanus toxin with carbohydrate subunit complexes provide insight into ganglioside binding. J. Biol. Chem. 275, 8889–8894 (2000)

    Article  PubMed  CAS  Google Scholar 

  51. Fotinou, C., Emsley, P., Black, I., et al.: The crystal structure of tetanus toxin HC fragment complexed with a synthetic GT1b analogue suggests cross-linking between ganglioside receptors and the toxin. J. Biol. Chem. 276, 32274–32281 (2001)

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This research was supported by the Intramural Research Program of the NIH, NIDDK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavol Kováč.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bongat, A.F.G., Saksena, R., Adamo, R. et al. Multimeric bivalent immunogens from recombinant tetanus toxin HC fragment, synthetic hexasaccharides, and a glycopeptide adjuvant. Glycoconj J 27, 69–77 (2010). https://doi.org/10.1007/s10719-009-9259-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-009-9259-4

Keywords

Navigation