Skip to main content
Log in

Monocyte macrophage differentiation in vitro: Fibronectin-dependent upregulation of certain macrophage-specific activities

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Transendothelial migration of monocytes followed by their differentiation into macrophages involves interaction of monocytes with subendothelial matrix. The influence of extracellular matrix on monocyte–macrophage differentiation was studied using an in vitro model system with human PBMC maintained on different matrix protein substrata. Upregulation of macrophage specific marker activities such as endocytosis of modified proteins, changes in expression of cell surface antigen, and production of matrix metalloproteinases was studied. Cells maintained on Fibronectin (Fn) showed significantly higher rate of endocytosis and production of MMP2 and MMP9 when compared to other matrix protein substrata. Immunoblot analysis, ELISA, and zymography showed that Fn-dependent upregulation of MMPs was blocked by antibodies to α5β1 integrin indicating that the Fn effect was mediated by integrins. The Fn effect on mo–mΦ was blocked by genistein and herbimycin. As monocytes differentiate to macrophages there was an increase in the rate of production of Fn. These results indicate the influence of the microenvironment of the cell, particularly Fn, on mo–mΦ differentiation and integrin-mediated downstream signaling through focal adhesion kinase and Src type tyrosine kinase is involved in this.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Furth, V.R.: Monocyte production during inflammation. Comp. Immunol. Microbiol. Infect. Dis. 8, 205–211 (1985)

    Article  PubMed  Google Scholar 

  2. Ross, R.: The pathogenesis of atherosclerosis: A perspective study for the 1990s. Nature 362, 801–809 (1993)

    Article  CAS  PubMed  Google Scholar 

  3. Takahashi, M., Masuyama, J., Ikeda, I., Kasahara, T., Kitigawa, S., Takahashi, Y., Shimeda, K., Kano, S.: Induction of MCP-1 synthesis in human monocytes during transendothelial migration in vitro. Cir. Res. 76, 750–757 (1995)

    CAS  Google Scholar 

  4. Ross, R.: Atheroscelerosis—an inflammatory disease. New Engl. J. Med. 340, 115–126 (1999)

    Article  CAS  PubMed  Google Scholar 

  5. Andreesen, R., Gadd, S., Costabel, U., Leser, H.G., Speth, V., Vesnik, B., Atkins R.C.: Human macrophage maturation and heterogeneity: Restricted expression of late differentiation antigens in situ. Cell Tissue Res. 253, 271–279 (1988)

    Article  CAS  PubMed  Google Scholar 

  6. Osterud, B., Bjorklid, E.: Role of monocytes in atherogenesis. Physiol. Rev. 83, 1069–1112 (2003)

    CAS  PubMed  Google Scholar 

  7. Feng, J., Han, J., Pearce, S.F.A., Silverstein, R.L., Gotto, A.M., Hajjar, D.P., Nicholson, A.C.: Induction of CD36 expression by oxidized LDL and IL-4 by a common signaling pathway dependent on protein kinase C and PPAR-γ. J. Lipid Res. 41, 688–696 (2000)

    CAS  PubMed  Google Scholar 

  8. Takashiba, S., Van Dyke, T.E., Amar, S., Murayama, Y., Soskolne, A.W., Shapira, L.: Differentiation of monocytes to macrophages primes cells for lipopolysaccharide stimulation via accumulation of cytoplasmic NFkB. Infect. Immun. 67, 5573–5578 (1999)

    CAS  PubMed  Google Scholar 

  9. Santhosh, A., Sudhakaran, P.R.: Influence of Collagen gel substrata on certain biochemical activities of hepatocytes in primary culture. Mol. Cell. Biochem. 137, 1273–1280 (1994)

    Article  Google Scholar 

  10. Bissel, D.M., Arenson, D.M., Maher, J.J., Roll, F.J.: Support of cultured hepatocytes on a laminin rich gel. J. Clin. Invest. 79, 801–812 (1987)

    Article  Google Scholar 

  11. Talina, L., Evans, M.D.M., Dimitrijevich, S.D., Steele, J.E.: Vitronectin and fibronectin is required for corneal fibroblast seed collagen gel contraction. Invest. Ophthalmol. Vis. Sci. 41, 103–109 (2000)

    Google Scholar 

  12. Jacob, S.S., Shastry, P., Sudhakaran, P.R.: Influence of non-enzymatically glycated collagen on monocytes–macrophage differentiation. Atherosclerosis 159, 333–341 (2001)

    Article  CAS  PubMed  Google Scholar 

  13. Jacob, S.S., Shastry, P., Sudhakaran, P.R.: Monocyte–macrophage differentiation in vitro: modulation of extracellular matrix protein substratum. Mol. Cell. Biochem. 233, 9–17 (2002)

    Article  CAS  PubMed  Google Scholar 

  14. Jacob, S.S., Sudhakaran, P.R.: Monocyte–macrophage differentiation in three dimensional collagen lattice. Biochim. Biophys. Acta 1540, 50–58 (2001)

    Article  CAS  PubMed  Google Scholar 

  15. Miura, M., Sato, M., Toyoshima, I., Senoo, H.: Elongation of long, multipolar processes in hepatic stellate cell culture on Type I Collagen gel by microtubule assembly: Observation utilizing time lapse video microscopy. Cells of the Hepatic Sinusoid 7, 17–20 (1999)

    CAS  Google Scholar 

  16. Streuli, C.: Extracellular matrix remodeling and cellular differentiation. Curr. Opin. Cell. Biol. 11, 634–640 (1999)

    Article  CAS  PubMed  Google Scholar 

  17. Jacob, S.S., Sudhakaran, P.R.: Molecular mechanism involved in matrix dependent upregulation of matrix metalloproteinases in monocytes/macrophage. J. Biochem. Mol. Biol. Biophys. 6, 335–340 (2002)

    Article  CAS  PubMed  Google Scholar 

  18. Huh, H.Y., Pearce, S.F., Yesner, L.M., Schindler, J.L., Silverstein, R.L.: Regulated expression of CD36 in foam cell formation. Blood 87, 2020–2025 (1996)

    CAS  PubMed  Google Scholar 

  19. Ambili, M., Sudhakaran, P.R.: Modulation of neutral matrix metalloproteinases of involuting rat mammary gland by different cations and glycosaminoglycans. J. Cell. Biochem. 73, 218–224 (1999)

    Article  CAS  PubMed  Google Scholar 

  20. Murphy, G., Hembry, R.M., McGarrity, A.M., Reynolds, J.J., Henderson, B.: Gelatinase (type IV collagenase) immunolocalisation in cells and tissues: Use of an antiserum to rabbit born gelatinase that identifies high and low Mr forms. J. Cell. Sci. 92, 487–495 (1989)

    CAS  PubMed  Google Scholar 

  21. Engvall, E., Perlman, P.: ELISA, Quantitative assay of immunoglobulin. Immunochemistry 8, 871–874 (1971)

    Article  CAS  Google Scholar 

  22. Basu, S.K., Goldstein, J.L., Anderson, R.G.W., Brown, M.S.: Degradation of cationised LDL and regulation of cholesterol metabolism in homozygous familial hypercholesterolemia fibroblasts. Proc. Natl. Acad. Sci. USA 73, 3178–3184 (1976)

    Article  CAS  PubMed  Google Scholar 

  23. Greenwood, F.C., Hunter, W.M., Clover, J.S.: The preparation of [131I] labeled human growth hormone of high specific reactivity. Biochem. J. 89, 114–122 (1963)

    CAS  PubMed  Google Scholar 

  24. Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J.: Protein measurement with Folin-phenol reagent. J. Biol. Chem. 1093, 265–271 (1951)

    Google Scholar 

  25. Weitcamp, B., Cullen, P., Plenz, G., Robenek, H., Rauterberg, J.: Human macrophages synthesize type VIII collagen in vitro and in atherosclerotic plaque. FASEB J. 13, 1445–1457 (1999)

    Google Scholar 

  26. Sudhakaran, P.R., Stamatoglou, S.C., Hughes, R.C.: Modulation of protein synthesis and secretion by substratum in primary cultures of rat hepatocytes. Exp. Cell Res. 167, 505–516 (1986)

    Article  CAS  PubMed  Google Scholar 

  27. Clark, E.A., Brugge, J.C.: Integrins and signal transduction pathways. The road taken. Science 268, 233 (1995)

    Article  CAS  PubMed  Google Scholar 

  28. Defilippi, P., Tarone, G., Gismondi, A., Santoni, A.: Activation of tyrosine kinases. In: Defilippi, P., Tarone, G., Gismondi, A., Santoni, A. (eds.) Signal transduction by integrins, Landes Bioscience, 29 (1997)

  29. Wahl, L.M., Lampel, L.L.: Regulation of human peripheral blood monocyte collagenase by prostaglandins and anti-inflammatory drugs. Cell. Immunol. 105, 411–422 (1987)

    Article  CAS  PubMed  Google Scholar 

  30. Pentland, A.P., Shapiro, S.D.,Welgus, H.G.: Agonist induced expression of tissue inhibitor of metalloproteinases and metalloproteinases by human macrophages is regulated by endogenous prostaglandin E2 synthesis. J. Invest. Dermatol. 104, 52–57 (1995)

    Article  CAS  PubMed  Google Scholar 

  31. Shankavaram, U.T., De Witt, D.L., Funk, S.E., Wahl, I.M.: Regulation of human monocytes matrix metalloproteinases by SPARC. J. Cell. Physiol. 173, 327–334 (1997)

    Article  CAS  PubMed  Google Scholar 

  32. Zhang, Y., Mc Cluskey, K., Fujii, K., Wahl, L.M.: Differential regulation of monocytes matrix metalloproteinase and TIMP-1 production by TNF-α, granulocyte-macrophage CSF, and IL-1β through prostaglandin-dependent and -independent mechanisms. J. Immunol. 161, 3071–3076 (1998)

    CAS  PubMed  Google Scholar 

  33. Lai, W.C., Zhou, M., Shankavaram, U., Peng, G., Wahl, L.M.: Differential regulation of lipopolysaccharide-induced monocytes matrix metalloproteinase (MMP)-1 and MMP9 by p38 and extracellular signal regulated kinase 1/2 mitogen-activated protein kinases. J. Immunol. 170, 6244–6249 (2003)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Financial assistance in the form of SRF from UGC to S.S. Jacob and from ICMR to A. Radhika is gratefully acknowledged. Support from Dr. Padma Shastry, NCCS, Pune for FACS analysis is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. R. Sudhakaran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sudhakaran, P.R., Radhika, A. & Jacob, S.S. Monocyte macrophage differentiation in vitro: Fibronectin-dependent upregulation of certain macrophage-specific activities. Glycoconj J 24, 49–55 (2007). https://doi.org/10.1007/s10719-006-9011-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-006-9011-2

Keywords

Navigation