Skip to main content
Log in

A Generalization of the Goldberg–Sachs theorem and its consequences

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

The Goldberg–Sachs theorem is generalized for all four-dimensional manifolds endowed with torsion-free connection compatible with the metric, the treatment includes all signatures as well as complex manifolds. It is shown that when the Weyl tensor is algebraically special severe geometric restrictions are imposed. In particular it is demonstrated that the simple self-dual eigenbivectors of the Weyl tensor generate integrable isotropic planes. Another result obtained here is that if the self-dual part of the Weyl tensor vanishes in a Ricci-flat manifold of (2,2) signature the manifold must be Calabi–Yau or symplectic and admits a solution for the source-free Einstein–Maxwell equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. In this paper the term “complexified manifold” means a manifold in which the metric can be complex, so that the Weyl tensor is also generally complex. The here called “real manifolds” are the ones with real metric and, consequently, real Weyl tensor. In general the tangent bundle of the real manifolds will be assumed to be complexified. Finally, the term “complex manifold” will mean a manifold that can be covered by complex charts with analytic transition functions, these manifolds are sometimes called Hermitian.

  2. Throughout this and the next section the Ricci tensor will always be assumed to vanish. Also the tangent bundle is assumed to be endowed with a torsion-free connection compatible with the metric (Levi-Civita), only this kind connection is considered in this article.

  3. Note that \(e^{1}_{\mu } =e_{3\,\mu },\, e^{2}_{\mu } =-e_{4\,\mu },\, e^{3}_{\mu } =e_{1\,\mu }\) and \(e^{4}_{\mu } =-e_{2\,\mu }\).

  4. Where by complex manifold it is meant a manifold which over the complex field can be covered by charts with analytic transition functions.

  5. Actually a Calabi–Yau manifold is defined to be a Kähler manifold with vanishing first Chern class. When the Ricci tensor is zero the first Chern class vanishes trivially. Conversely, it can be proved that a Kähler manifold with vanishing first Chern class admits a Ricci-flat metric.

  6. Note that if \(\omega _{12}=0,\, \omega _{43}=0\) and \(\omega _{24}=\omega _{13}\) then all the isotropic distributions \(\{ae_1+be_4,ae_2+be_3\}\) for \(a,b\) constants are integrable. Thus anti-self-dual manifolds admit infinitely many integrable self-dual isotropic distributions.

  7. Meaning that the manifold over the complex field can be covered by charts with analytic transition functions.

  8. In the Newman-Penrose formalism the shear parameter is given by \(\sigma =\omega _{212}\), which is zero in the considered case.

  9. For instance, reference [33] proved that the repeated PNDs of 5-dimensional Myers-Perry black hole are not shear-free.

  10. In CMPP classification the WANDs are natural higher-dimensional analogues of the four-dimensional PNDs [32].

References

  1. Petrov, A.Z.: The classification of spaces definig gravitational fields. Gen. Relativ. Gravit. 32, 1665 (2000). This is a translated republication of original 1954 paper

    Google Scholar 

  2. Stephani, H., et al.: Exact Solutions of Einstein’s field Equations. Cambridge University Press, Cambridge (2009)

  3. Kerr, R.P.: Gravitational field of a spinning mass as an example of algebraically special metrics. Phys. Rev. Lett. 11, 237 (1963)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Goldberg, J., Sachs, R.: A theorem on Petrov types. Gen. Relativ. Gravit. 41, 433 (2009). This is a republication of original 1962 paper

  5. Batista, C.: Weyl tensor classifcation in four-dimensional manifolds of all signatures. Gen. Relativ. Gravit. (2013). doi:10.1007/s10714-013-1499-8. Available at arXiv:1204.5133

  6. Plebański, J.F., Hacyan, S.: Null geodesic surfaces and Goldberg-Sachs theorem in complex Riemannian spaces. J. Math. Phys. 16, 2403 (1975)

    Article  ADS  MATH  Google Scholar 

  7. Przanowski, M., Broda, B.: Locally Kähler gravitational instantons. Acta Physica Polonica B14, 637 (1983)

    MathSciNet  Google Scholar 

  8. Nurowski, P., Trautman, A.: Robinson manifolds as the Lorentzian analogs of Hermite Manifolds. Differ Geom Appl 17, 175 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gover, A., Hill, C., Nurowski, P.: Sharp version of the Goldberg–Sachs theorem. Annali di Matematica Pura ed Applicata 190 Number 2, 295 (2011). Available at arXiv:0911.3364

  10. Durkee, M., Reall, H.S.: A higher-dimensional generalization of the geodesic part of the Goldberg–Sachs theorem. Class. Quantum Grav. 26, 245005 (2009). Available at arXiv:0908.2771

    Google Scholar 

  11. Ortaggio, M., et al.: On a five-dimensional version of the Goldberg-Sachs theorem. Available at arXiv:1205.1119

  12. Taghavi-Chabert, A.: Optical structures, algebraically special spacetimes and the Goldberg-Sachs theorem in five dimensions. Class. Quantum Grav. 28, 145010 (2011). Available at arXiv:1011.6168

    Google Scholar 

  13. Taghavi-Chabert, A.: The complex Goldberg-Sachs theorem in higher dimensions. J. Geom. Phys. 62, 981 (2012). Available at arXiv:1107.2283

    Google Scholar 

  14. Law, P.R.: Neutral Einstein metrics in four dimensions. J. Math. Phys. 32, 3039 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Coley, A., Hervik, S.: Higher dimensional bivectors and classification of the Weyl operator. Class. Quantum Grav. 27, 015002 (2010). Available at arXiv:0909.1160

    Google Scholar 

  16. Hervik, S., Coley, A.: Curvature operators and scalar curvature invariants. Class. Quantum Grav. 27, 095014 (2010). Available at arXiv:1002.0505

  17. Plebański, J.: Some solutions of complex Einstein equations. J. Math. Phys. 16, 2395 (1975)

    Article  ADS  Google Scholar 

  18. Hacyan, S.: Gravitational instantons in H-spaces. Phys. Lett. 75A, 23 (1979)

    MathSciNet  ADS  Google Scholar 

  19. Law, P.R.: Classification of the Weyl curvature spinors of neutral metrics in four dimensions. J. Geom. Phys. 56, 2093 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. Hervik, S., Coley, A.: On the algebraic classification of pseudo-Riemannian spaces. Int. J. Geom. Methods Mod. Phys. 8, 1679 (2011). Available at arXiv:1008.3021

    Google Scholar 

  21. Penrose, R., Rindler, W.: Spinors and space-time vol. 1 and 2, Cambridge University Press, Cambridge (1984 and 1986)

  22. Bel, L.: Radiation states and the problem of energy in general relativity. Gen. Relativ. Gravit. 32, 2047 (2000) Reprint of a 1962 paper

  23. Robinson, I., Schild, A.: Generalization of a theorem by Goldberg and Sachs. J. Math. Phys. 4, 484 (1963)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. Kopczynski, W., Trautman, A.: Simple spinors and real structures. J. Math. Phys. 33, 550 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Nakahara, M.: Geometry, Topology and Physics. Taylor & Francis, London (2003)

    MATH  Google Scholar 

  26. Newlander, A., Nirenberg, L.: Complex analytic coordinates in almost complex manifolds. Ann. Math. 65, 391 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wald, R.M.: General Relativity. The University of Chicago Press, Chicago (1984)

    Book  MATH  Google Scholar 

  28. Kinnersley, W.: Type D vacuum metrics. J. Math. Phys. 10, 1195 (1969)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. Ivanov, S., Zamkovoy, S.: Parahermitian and paraquaternionic manifolds. Differ. Geom. Appl. 23, 205 (2005). Available at arXiv:math/0310415

    Google Scholar 

  30. McIntosh, C., Hickman, M.: Complex relativity and real solutions. I: Introduction. Gen. Relativ. Gravit. 17, 111 (1985)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. Mason, L., Woodhouse, N.: Integrability, self-duality and twistor theory. Oxford University Press, Oxford (1996)

    MATH  Google Scholar 

  32. Coley, A., Milson, R., Pravda, V., Pravdová, A.: Classification of the Weyl Tensor in higher dimensions. Class. Quantum Grav. 21, L-35 (2004). Available at arXiv:gr-qc/0401008

  33. Frolov, V., Stojković, D.: Particle and light motion in a space-time of a five-dimensional black hole. Phys. Rev. D 68, 064011 (2003). Available at arXiv:gr-qc/0301016

    Google Scholar 

  34. Berkovits, N., Marchioro, D.: Relating the Green–Schwarz and pure spinor formalisms for the superstring. J. High Energy Phys. 01(2005). Available at arXiv:hep-th/0412198.

Download references

Acknowledgments

I want to thank Bruno G. Carneiro da Cunha for the encouragement and for the manuscript revision. This research was supported by CNPq(Conselho Nacional de Desenvolvimento Científico e Tecnológico).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Batista.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Batista, C. A Generalization of the Goldberg–Sachs theorem and its consequences. Gen Relativ Gravit 45, 1411–1431 (2013). https://doi.org/10.1007/s10714-013-1539-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-013-1539-4

Keywords

Navigation