Skip to main content
Log in

Hawking temperature in the eternal BTZ black hole: an example of holography in AdS spacetime

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We review the relation between AdS spacetime in 1 \(+\) 2 dimensions and the BTZ black hole (BTZbh). Later we show that a ground state in AdS spacetime becomes a thermal state in the BTZbh. We show that this is true in the bulk and in the boundary of AdS spacetime. The existence of this thermal state is tantamount to say that the Unruh effect exists in AdS spacetime and becomes the Hawking effect for an eternal BTZbh. In order to make this we use the correspondence introduced in algebraic holography between algebras of quasi-local observables associated to wedges and double cones regions in the bulk of AdS spacetime and its conformal boundary respectively. Also we give the real scalar quantum field as a concrete heuristic realization of this formalism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. From here on instead of writing conformal boundary of AdS spacetime we will just write boundary of AdS spacetime unless a confusion can arise.

  2. By AdS/CFT in QFT we mean AH, the boundary-limit holography and Pre-Holography since all them fit in the QFT framework.

  3. The projective cone is obtained from the null cone by identifying a ray in the null cone with a point. This is why we can introduce the coordinates (4) in this projective cone.

  4. This subgroup is a subgroup of period 2\(\pi \) of the continuous group generated by the appropriate Killing vector of AdS spacetime.

  5. Similar plots have been given before in [11, 14].

  6. It is worth to note that a more primitive definition of a wedge region in AdS spacetime is to define it as the intersection of AdS spacetime with a wedge region in the embedding space.

  7. Here \(\partial _{T}\) and \(\partial _{t}\) are the Killing vectors associated with translations in \(T\) and \(t\) respectively.

  8. Here we are following the conditions on the algebra \(A\) used in AH [1]. The conclusions we get are as valid as AH is.

  9. This state should satisfy certain mathematical conditions, see for example [7] p. 122.

  10. For a similar result in the Schwarzschild black hole see [17].

  11. See also [5].

References

  1. Rehren, K.H.: Algebraic holography. Ann. Henri Poincare 1, 607–623 (2000). arXiv:hep-th/9905179v4

  2. Bertola, M., Bros, J., Moschella, U., Schaeffer, R.: A general construction of conformal field theories from scalar anti-de Sitter quantum field theories. Nucl. Phys. B 587, 619–644 (2000). arXiv:hep-th/9908140v2

    Google Scholar 

  3. Kay, B.S., Larkin, P.: Pre-holography. Phys. Rev. D 77, 121501(R) (2008). arXiv:0708.1283v3[hep-th]

  4. Bañados, M., Henneaux, M., Teitelboim, C., Zanelli, J.: Geometry of the 2+1 black hole. Phys. Rev. D 48, 1506 (1993). arXiv:gr-qc/9302012v3

    Google Scholar 

  5. Kay, B.S., Ortíz, L.: Brick Walls and AdS/CFT (2011). arXiv:1111.6429v1

  6. Witten, E.: Anti de Sitter space and holography. Adv. Theor. Math. Phys. 2, 253–291 (1998). arXiv:hep-th/9802150v2

  7. Haag, R.: Local Quantum Physics, 2nd edn. Springer, Berlin (1996)

    Google Scholar 

  8. Hawking, S.W., Ellis, G.F.R.: The Large Scale Structure of Space-Time. Cambridge University Press, Cambridge (1984) (reprint)

  9. Bayona, B.C.A., Braga, N.R.F.: Anti-de Sitter boundary in poincaré coordinates. Gen. Relativ. Gravit. 39, 1367–1379 (2007). arXiv:hep-th/0512182v3

    Google Scholar 

  10. Carlip, S.: Quantum Gravity in \(2 + 1\) Dimensions. Cambridge University Press, Cambridge (1998)

  11. Åminneborg, S., Bengtsson, I., Holst, S.: A spinning anti-de Sitter wormhole. Class. Quantum Grav. 16, 363–382 (1999). arXiv:gr-qc/9805028v2

    Google Scholar 

  12. Brill, D.: Black Holes and Wormholes in 2+1 Dimensions. Prepared for the 2nd Samos Meeting on Cosmology, Geometry and Relativity: Mathematical and Quantum Aspects of Relativity and Cosmology, Karlovasi, 31 Aug–4 Sep (1998)

  13. Birrell, N.D., Davies, P.C.W.: Quantum Fields in Curved Space. Cambridge University Press, Cambridge (1994) (reprint)

  14. Åminneborg, S., Bengtsson, I.: Anti-de Sitter quotients: when are they black holes? Class. Quantum Grav. 25, 095019 (2008). arXiv:0801.3163v2[gr-qc]

  15. Dimock, J.: Algebras of local observables on a manifold. Commun. Math. Phys. 77, 219–228 (1980)

    MathSciNet  ADS  MATH  Google Scholar 

  16. Reed, M., Simon, B.: Methods of Modern Mathematical Physics, vol. 1. Academic Press, New York (1980)

    MATH  Google Scholar 

  17. Sewell, G.L.: Relativity of temperature and the Hawking effect. Phys. Lett. 79A, 23–24 (1980)

    MathSciNet  ADS  Google Scholar 

  18. Ortíz, L.: Quantum Fields on BTZ Black Holes. Ph. D. Thesis, The University of York (2011). http://etheses.whiterose.ac.uk/1646/

  19. Fulling, S.A., Ruijsenaars, S.N.M.: Temperature, periodicity and horizons. Phys. Rep. 152, 135–176 (1987)

    MathSciNet  ADS  Google Scholar 

  20. Francesco, P.D., Mathieu, P., Sénéchal, D.: Conformal Field Theory. Springer, Berlin (1997)

  21. Banach, R., Dowker, J.S.: Automorphic field theory-some mathematical issues. J. Phys. A Math. Gen. 12, 2527–2543 (1979)

    MathSciNet  ADS  Google Scholar 

  22. Cramer, C.R., Kay, B.S.: Stress-energy must be singular on the Misner space horizon even for automorphic fields. Class. Quantum Gravit. 13, L143 (1996)

    MathSciNet  ADS  Google Scholar 

  23. Maldacena, J.: Eternal black holes in anti-de-Sitter. J. High Energy Phys. 304, 21 (2003). arXiv:hep-th/0106112v6

  24. Keski-Vakkuri, E.: Bulk and boundary dynamics in BTZ black holes. Phys. Rev. D 59, 104001 (1999). arXiv:hep-th/9808037v3

Download references

Acknowledgments

I thank my supervisor, Dr. Bernard S. Kay, for suggesting me to study equilibrium thermal states in AdS spacetime and their relation to equilibrium thermal states in the BTZbh. I also thank him for his guidance and helpful advise during this work. This work was carried out with the sponsorship of CONACYT-Mexico through the grant 302006 and a postdoctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Ortíz.

Appendix: Global conformal transformations in two dimensions

Appendix: Global conformal transformations in two dimensions

In Sect. 5 we found explicitly the subgroups of the global conformal group in two dimensions generated by \(J_{uy}\) and \(J_{vx}\). In this “Appendix” we give the others subgroups of this group.

First let us remember the elements of the Lie algebra of the AdS group. These elements are

$$\begin{aligned} \begin{array}{cc} J_{uv}=u\partial _{v}-v\partial _{u}&\quad \quad J_{xy}=x\partial _{y}-y\partial _{x} \\ J_{ux}=u\partial _{x}+x\partial _{u}&\quad J_{uy}=u\partial _{y}+y\partial _{u} \\ J_{vx}=v\partial _{x}+x\partial _{v}&\quad J_{vy}=v\partial _{y}+y\partial _{v} \end{array} \end{aligned}$$
(67)

It is well known that in a representation on the vector space \(\mathbb R ^{2,2}\) these generators can be represented by the matrices

$$\begin{aligned}&J_{uv}=\left( \begin{array}{l@{\quad }l@{\quad }l@{\quad }l} 0&-1&0&0 \\ 1&0&0&0 \\ 0&0&0&0 \\ 0&0&0&0 \end{array} \right)\quad J_{xy}=\left( \begin{array}{l@{\quad }l@{\quad }l@{\quad }l} 0&0&0&0 \\ 0&0&0&0 \\ 0&0&0&-1 \\ 0&0&1&0 \end{array} \right) \end{aligned}$$
(68)
$$\begin{aligned}&J_{ux}=\left( \begin{array}{l@{\quad }l@{\quad }l@{\quad }l} 0&0&1&0 \\ 0&0&0&0 \\ 1&0&0&0 \\ 0&0&0&0 \end{array} \right)\quad J_{uy}=\left( \begin{array}{l@{\quad }l@{\quad }l@{\quad }l} 0&0&0&1 \\ 0&0&0&0 \\ 0&0&0&0 \\ 1&0&0&0 \end{array} \right) \end{aligned}$$
(69)
$$\begin{aligned}&J_{vx}=\left( \begin{array}{l@{\quad }l@{\quad }l@{\quad }l} 0&0&0&0 \\ 0&0&1&0 \\ 0&1&0&0 \\ 0&0&0&0 \end{array} \right)\quad J_{vy}=\left( \begin{array}{l@{\quad }l@{\quad }l@{\quad }l} 0&0&0&0 \\ 0&0&0&1 \\ 0&0&0&0 \\ 0&1&0&0 \end{array} \right) \end{aligned}$$
(70)

For our purposes the relevant elements of the Lie algebra of the AdS group are

$$\begin{aligned}&A=J_{ux}-J_{uv}=\left( \begin{array}{l@{\quad }l@{\quad }l@{\quad }l} 0&1&1&0 \\ -1&0&0&0 \\ 1&0&0&0 \\ 0&0&0&0 \end{array} \right),\end{aligned}$$
(71)
$$\begin{aligned}&B=J_{xy}+J_{vy}=\left( \begin{array}{l@{\quad }l@{\quad }l@{\quad }l} 0&0&0&0 \\ 0&0&0&1 \\ 0&0&0&-1 \\ 0&1&1&0 \end{array} \right), \end{aligned}$$
(72)
$$\begin{aligned}&C=J_{uv}+J_{ux}=\left( \begin{array}{l@{\quad }l@{\quad }l@{\quad }l} 0&-1&1&0 \\ 1&0&0&0 \\ 1&0&0&0 \\ 0&0&0&0 \end{array} \right), \end{aligned}$$
(73)
$$\begin{aligned}&D=J_{xy}-J_{vy}=\left( \begin{array}{l@{\quad }l@{\quad }l@{\quad }l} 0&0&0&0 \\ 0&0&0&-1 \\ 0&0&0&-1 \\ 0&-1&1&0 \end{array} \right) \end{aligned}$$
(74)

Let \(\mathbf{a}=(a,b)\) be a two dimensional vector. Then

$$\begin{aligned} \Lambda (\mathbf{a})=e^{aA+bB}=\left( \begin{array}{l@{\quad }l@{\quad }l@{\quad }l} 1&a&a&0 \\ -a&1+\frac{b^{2}-a^{2}}{2}&\frac{b^{2}-a^{2}}{2}&b \\ a&\frac{a^{2}-b^{2}}{2}&1+\frac{a^{2}-b^{2}}{2}&-b \\ 0&b&b&1 \end{array} \right). \end{aligned}$$
(75)

If we apply this transformation to \(X^{T}=(u,v,x,y)\) we get

$$\begin{aligned} \left( \begin{array}{c} u^{\prime } \\ v^{\prime } \\ x^{\prime } \\ y^{\prime } \end{array} \right)=\left( \begin{array}{cccc} u+av+ax \\ -au+\left(1+\frac{b^{2}-a^{2}}{2}\right)v + \left(\frac{b^{2}-a^{2}}{2}\right)x+by \\ au+\left(\frac{a^{2}-b^{2}}{2}\right)v + \left(1+\frac{a^{2}-b^{2}}{2}\right)x-by \\ bv+vx+y \end{array} \right). \end{aligned}$$
(76)

Using (29) we finally get

$$\begin{aligned} \xi {^{\prime }}^{1}=\xi ^{1}+a\quad \xi {^{\prime }}^{2}=\xi ^{2}+b. \end{aligned}$$
(77)

Hence \(\Lambda (\mathbf{a})\) generate the translation subgroup on \(\xi ^{1}\) and \(\xi ^{2}\).

The special conformal transformations can be obtained in similar way. Let \(\mathbf{c}=(c,d)\) be a two dimensional vector. Then

$$\begin{aligned} \Lambda (\mathbf{c})=e^{cC+dD}=\left( \begin{array}{l@{\quad }l@{\quad }l@{\quad }l} 1&-c&c&0 \\ c&1+\frac{d^{2}-c^{2}}{2}&\frac{c^{2}-d^{2}}{2}&-d \\ c&\frac{d^{2}-c^{2}}{2}&1+\frac{c^{2}-d^{2}}{2}&-d \\ 0&-d&d&1 \end{array} \right). \end{aligned}$$
(78)

Applying this transformation to \(X^{T}=(u,v,x,y)\) we get

$$\begin{aligned} \left( \begin{array}{c} u^{\prime } \\ v^{\prime } \\ x^{\prime } \\ y^{\prime } \end{array} \right)=\left( \begin{array}{cccc} u-cv+cx \\ cu+\left(1+\frac{d^{2}-c^{2}}{2}\right)v + \left(\frac{c^{2}-d^{2}}{2}\right)x -dy\\ cu+\left(\frac{d^{2}-c^{2}}{2}\right)v + \left(1+\frac{c^{2}-d^{2}}{2}\right)x -dy\\ -dv+dx+y \end{array} \right). \end{aligned}$$
(79)

Using again (29) we get

$$\begin{aligned} \xi {^{\prime }}^{1}=\frac{\xi ^{1}-c\left(\xi \cdot \xi \right)}{1-2\left(\xi \cdot \mathbf{c}\right)+\left(\mathbf{c}\cdot \mathbf{c} \right)\left(\xi \cdot \xi \right)}\quad \quad \quad \xi {^{\prime }}^{2} =\frac{\xi ^{2}-d\left(\xi \cdot \xi \right)}{1-2\left(\xi \cdot \mathbf{c} \right)+\left(\mathbf{c}\cdot \mathbf{c}\right)\left(\xi \cdot \xi \right)},\qquad \end{aligned}$$
(80)

where the inner product is with respect to the metric \(\mathrm{diag}=(-1,1)\). Hence \(\Lambda (\mathbf{c})\) generate the special conformal subgroup on \(\xi ^{1}\) and \(\xi ^{2}\).

Finally we will transform the coordinates \(\xi ^{1}\) and \(\xi ^{2}\) to complex coordinates in \(\mathbb C ^{2}\). We have

$$\begin{aligned} \xi ^{1}+\xi ^{2}=\tan \left(\frac{\lambda +\theta }{2}\right)\quad \xi ^{1}-\xi ^{2}=\tan \left(\frac{\lambda -\theta }{2}\right). \end{aligned}$$
(81)

If we define

$$\begin{aligned} z_{1}\equiv \frac{1+i(\xi ^{1}+\xi ^{2})}{1-i(\xi ^{1}+\xi ^{2})} \quad z_{2}\equiv \frac{1+i(\xi ^{1}-\xi ^{2})}{1-i(\xi ^{1}-\xi ^{2})}, \end{aligned}$$
(82)

then

$$\begin{aligned} z_{1}=e^{i(\lambda -\theta )}\quad z_{2}=e^{i(\lambda +\theta )}. \end{aligned}$$
(83)

If now we make \(\tau =i\lambda \) then

$$\begin{aligned} z_{1}=e^{\tau }e^{-i\theta }\quad z_{2}=e^{\tau }e^{i\theta }. \end{aligned}$$
(84)

We can consider \(z_{1}\) and \(z_{2}\) as complex conjugate of each other and define on the complex plane. However following the usual approach to conformal field theory [20] they can be considered as independent complex variables and define \(\mathbb C ^{2}\). At this point we could apply the standard conformal field theory to our problem by using \(z_{1}\) and \(z_{2}\) as our complex variables.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ortíz, L. Hawking temperature in the eternal BTZ black hole: an example of holography in AdS spacetime. Gen Relativ Gravit 45, 427–448 (2013). https://doi.org/10.1007/s10714-012-1480-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-012-1480-y

Keywords

Navigation