Skip to main content
Log in

Dark energy as a mirage

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

Motivated by the observed cosmic matter distribution, we present the following conjecture: due to the formation of voids and opaque structures, the average matter density on the path of the light from the well-observed objects changes from Ω M ≃ 1 in the homogeneous early universe to Ω M ≃ 0 in the clumpy late universe, so that the average expansion rate increases along our line of sight from EdS expansion Ht ≃ 2/3 at high redshifts to free expansion Ht ≃ 1 at low redshifts. To calculate the modified observable distance–redshift relations, we introduce a generalized Dyer–Roeder method that allows for two crucial physical properties of the universe: inhomogeneities in the expansion rate and the growth of the nonlinear structures. By treating the transition redshift to the void-dominated era as a free parameter, we find a phenomenological fit to the observations from the CMB anisotropy, the position of the baryon oscillation peak, the magnitude–redshift relations of type Ia supernovae, the local Hubble flow and the nucleosynthesis, resulting in a concordant model of the universe with 90% dark matter, 10% baryons, no dark energy, 15 Gyr as the age of the universe and a natural value for the transition redshift z 0 = 0.35. Unlike a large local void, the model respects the cosmological principle, further offering an explanation for the late onset of the perceived acceleration as a consequence of the forming nonlinear structures. Additional tests, such as quantitative predictions for angular deviations due to an anisotropic void distribution and a theoretical derivation of the model, can vindicate or falsify the interpretation that light propagation in voids is responsible for the perceived acceleration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Zel’dovich Ya.B.: Observations in a universe homogeneous in the mean. Sov. Ast. 8, 13 (1964)

    MathSciNet  ADS  Google Scholar 

  2. Bertotti B.: The luminosity of distant galaxies. Proc. R. Soc. Lond. A 294, 195 (1966)

    Article  ADS  Google Scholar 

  3. Gunn J.E.: On the propagation of light in inhomogeneous cosmologies. I. Mean Eff. Astrophys. J. 150, 737 (1967)

    Article  ADS  Google Scholar 

  4. Kantowski R.: Corrections in the luminosity-redshift relations of the homogeneous friedmann models. Astrophys. J. 155, 89 (1969)

    Article  ADS  Google Scholar 

  5. Dyer C.C., Roeder R.C.: The distance–redshift relation for universes with no intergalactic medium. Astrophys. J. 174, L115 (1972)

    Article  ADS  Google Scholar 

  6. Dyer C.C., Roeder R.C.: Distance–redshift relations for universes with some intergalactic medium. Astrophys. J. 180, L31 (1973)

    Article  ADS  Google Scholar 

  7. Hoyle F., Vogeley M.S.: Voids in the 2dF galaxy redshift survey. Astrophys. J. 607, 751 (2004) [arXiv:astro-ph/0312533]

    Article  ADS  Google Scholar 

  8. Gott J.R.I. et al.: A map of the universe. Astrophys. J. 624, 463 (2005) [arXiv:astro-ph/0310571]

    Article  ADS  Google Scholar 

  9. Tikhonov A.V.: Voids in the SDSS galaxy survey. Astron. Lett. 33, 499 (2007) [arXiv:0707.4283 [astro-ph]]

    Article  ADS  Google Scholar 

  10. von Benda-Beckmann, A.M., Mueller, V.: Void statistics and void galaxies in the 2dFGRS. arXiv:0710.2783 [astro-ph]

  11. Einasto M., Einasto J., Tago E., Dalton G.B., Andernach H.: The structure of the universe traced by rich clusters of galaxies. Mon. Not. R. Astron. Soc. 269, 301 (1994)

    ADS  Google Scholar 

  12. Rudnick L., Brown S., Williams L.R.: Extragalactic radio sources and the WMAP cold spot. Astrophys. J. 671, 40 (2007) [arXiv:0704.0908 [astro-ph]]

    Article  ADS  Google Scholar 

  13. Copeland E.J., Sami M., Tsujikawa S.: Dynamics of dark energy. Int. J. Mod. Phys. D 15, 1753 (2006) [arXiv:hep-th/0603057]

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Straumann N.: Dark energy: recent developments. Mod. Phys. Lett. A 21, 1083 (2006) [arXiv:hep-ph/0604231]

    Article  MathSciNet  ADS  Google Scholar 

  15. Sahni V., Starobinsky A.: Reconstructing dark energy. Int. J. Mod. Phys. D 15, 2105 (2006) [arXiv:astro-ph/0610026]

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Riess, A.G., et al. [Supernova Search Team Collaboration]: Type Ia supernova discoveries at z > 1 from the Hubble Space telescope: evidence for past deceleration and constraints on dark energy evolution. Astrophys. J. 607, 665 (2004) [arXiv:astro-ph/0402512]

    Google Scholar 

  17. Riess A.G. et al.: New hubble space telescope discoveries of type Ia Supernovae at z > 1: narrowing constraints on the early behavior of dark energy. Astrophys. J. 659, 98 (2007) [arXiv:astro-ph/0611572]

    Article  ADS  Google Scholar 

  18. Eisenstein D.J. et al.: Detection of the Baryon acoustic peak in the large-scale correlation function of sdss luminous red galaxies. Astrophys. J. 633, 560 (2005) [arXiv:astro-ph/0501171]

    Article  ADS  Google Scholar 

  19. Spergel, D.N., et al. [WMAP Collaboration]: Wilkinson microwave anisotropy probe (WMAP) three year results: implications for cosmology. Astrophys. J. Suppl. 170, 377 (2007) [arXiv:astro-ph/0603449]

    Google Scholar 

  20. Schwarz, D.J.: Accelerated expansion without dark energy. arXiv:astro-ph/0209584

  21. Wetterich C.: Can structure formation influence the cosmological evolution? Phys. Rev. D 67, 043513 (2003) [arXiv:astro-ph/0111166]

    Article  ADS  Google Scholar 

  22. Räsänen S.: Dark energy from backreaction. JCAP 0402, 003 (2004) [arXiv:astro-ph/0311257]

    Google Scholar 

  23. Räsänen S.: Accelerated expansion from structure formation. JCAP 0611, 003 (2006) [arXiv:astro-ph/0607626]

    Google Scholar 

  24. Räsänen S.: Evaluating backreaction with the peak model of structure formation. JCAP 0804, 026 (2008) [arXiv:0801.2692 [astro-ph]]

    Google Scholar 

  25. Räsänen S.: Light propagation in statistically homogeneous and isotropic dust universes. JCAP 0902, 011 (2009) [arXiv:0812.2872[astro-ph]]

    Google Scholar 

  26. Buchert T.: Dark energy from structure—a status report. Gen. Relativ. Gravit. 40, 467 (2008) [arXiv:0707.2153 [gr-qc]]

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. Ishibashi A., Wald R.M.: Can the acceleration of our universe be explained by the effects of inhomogeneities? Class. Quant. Grav. 23, 235 (2006) [arXiv:gr-qc/0509108]

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. Paranjape A., Singh T.P.: Cosmic inhomogeneities and the average cosmological dynamics. Phys. Rev. Lett. 101, 181101 (2008) [arXiv:0806.3497 [astro-ph]]

    Article  ADS  Google Scholar 

  29. Kolb E.W., Marra V., Matarrese S.: On the description of our cosmological spacetime as a perturbed conformal Newtonian metric and implications for the backreaction proposal for the accelerating universe. Phys. Rev. D 78, 103002 (2008) [arXiv:0807.0401 [astro-ph]]

    Article  ADS  Google Scholar 

  30. Shirokov M.F., Fisher I.Z.: Isotropic space with discrete gravitational-field sources. on the theory of a nonhomogeneous isotropic universe. Sov. Ast. 6, 699 (1963)

    ADS  Google Scholar 

  31. Ellis G.F.R.: Relativistic cosmology: Its nature, aims and problems. In: Bertotti, B., Felice, F., Pascolini, A. (eds) General Relativity and Gravitation, pp. 215. Reidel D Publishing Company, Dordrecht (1984)

    Google Scholar 

  32. Ellis G.F.R., Stoeger W.: The fitting problem in cosmology. Class. Quant. Grav. 4, 1697 (1987)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. Ellis G.F.R.: 83 years of general relativity and cosmology: progress and problems. Class. Quant. Grav. 16, A37 (1999)

    Article  ADS  MATH  Google Scholar 

  34. Ellis G.F.R., Buchert T.: The universe seen at different scales. Phys. Lett. A 347, 38 (2005) [arXiv:gr-qc/0506106]

    Article  MathSciNet  ADS  Google Scholar 

  35. Buchert T.: On average properties of inhomogeneous fluids in general relativity. I: Dust cosmologies. Gen. Relativ. Gravit. 32, 105 (2000) [arXiv:gr-qc/9906015]

    Article  MathSciNet  ADS  MATH  Google Scholar 

  36. Mattsson T., Ronkainen M.: Exploiting scale dependence in cosmological averaging. JCAP 0802, 004 (2008) [arXiv:0708.3673 [astro-ph]]

    ADS  Google Scholar 

  37. Apostolopoulos P.S., Brouzakis N., Tetradis N., Tzavara E.: Cosmological acceleration and gravitational collapse. JCAP 0606, 009 (2006) [arXiv:astro-ph/0603234]

    ADS  Google Scholar 

  38. Kai T., Kozaki H., Nakao K.I., Nambu Y., Yoo C.M.: Can inhomogeneties accelerate the cosmic volume expansion? Prog. Theor. Phys. 117, 229 (2007) [arXiv:gr-qc/0605120]

    Article  MathSciNet  ADS  MATH  Google Scholar 

  39. Paranjape A., Singh T.P.: The possibility of cosmic acceleration via spatial averaging in Lemaître–Tolman–Bondi models. Class. Quant. Gravit. 23, 6955 (2006) [arXiv:astro-ph/0605195]

    Article  MathSciNet  ADS  MATH  Google Scholar 

  40. Wiltshire D.L.: Cosmic clocks, cosmic variance and cosmic averages. New J. Phys. 9, 377 (2007) [arXiv:gr-qc/0702082]

    Article  ADS  Google Scholar 

  41. Wiltshire D.L.: Exact solution to the averaging problem in cosmology. Phys. Rev. Lett. 99, 251101 (2007) [arXiv:0709.0732 [gr-qc]]

    Article  ADS  Google Scholar 

  42. Leith B.M., Ng S.C.C., Wiltshire D.L.: Gravitational energy as dark energy: concordance of cosmological tests. Astrophys. J. 672, L91 (2008) [arXiv:0709.2535 [astro-ph]]

    Article  ADS  Google Scholar 

  43. Wiltshire D.L.: Gravitational energy and cosmic acceleration. Int. J. Mod. Phys. D 17, 641 (2008) [arXiv:0712.3982 [gr-qc]]

    Article  MathSciNet  ADS  MATH  Google Scholar 

  44. Wiltshire, D.L.: Dark energy without dark energy. arXiv:0712.3984 [astro-ph]

  45. Wiltshire D.L.: Cosmological equivalence principle and the weak-field limit. Phys. Rev. D 78, 084032 (2008) [arXiv:0809.1183 [gr-qc]]

    Article  MathSciNet  ADS  Google Scholar 

  46. Smith, K.M., Huterer, D.: No evidence for the cold spot in the NVSS radio survey. arXiv:0805.2751 [astro-ph]

  47. Moffat, J.W., Tatarski, D.C.: Cosmological observations in a local void. arXiv:astro-ph/9407036

  48. Zehavi I., Riess A.G., Kirshner R.P., Dekel A.: A local hubble bubble from SNe Ia? Astrophys. J. 503, 483 (1998) [arXiv:astro-ph/9802252]

    Article  ADS  Google Scholar 

  49. Tomita K.: A local void and the accelerating universe. Mon. Not. R. Astron. Soc. 326, 287 (2001) [arXiv:astro-ph/0011484]

    Article  ADS  Google Scholar 

  50. Frith W.J., Metcalfe N., Shanks T.: New H-band galaxy number counts: a large local hole in the galaxy distribution? Mon. Not. R. Astron. Soc. 371, 1601 (2006) [arXiv:astro-ph/0509875]

    Article  ADS  Google Scholar 

  51. Lemaître, G.: Annales Soc. Sci. Brux. Ser. I Sci. Math. Astron. Phys. A 53 51 (1933) (For an English translation, see: G. Lemaître, The Expanding Universe. Gen. Relativ. Gravit. 29, 641 (1997))

  52. Plebanski J., Krasinski A.: An Introduction to General Relativity and Cosmology. Cambridge University Press, London (2006)

    MATH  Google Scholar 

  53. Mustapha N., Hellaby C., Ellis G.F.R.: Large scale inhomogeneity versus source evolution: can we distinguish them observationally? Mon. Not. R. Astron. Soc. 292, 817 (1997) [arXiv:gr-qc/9808079]

    ADS  Google Scholar 

  54. Celerier M.N.: Do we really see a cosmological constant in the supernovae data? Astron. Astrophys. 353, 63 (2000) [arXiv:astro-ph/9907206]

    ADS  Google Scholar 

  55. Alnes H., Amarzguioui M., Grøn Ø.: An inhomogeneous alternative to dark energy? Phys. Rev. D 73, 083519 (2006) [arXiv:astro-ph/0512006]

    Article  ADS  Google Scholar 

  56. Enqvist K., Mattsson T.: The effect of inhomogeneous expansion on the supernova observations. JCAP 0702, 019 (2007) [arXiv:astro-ph/0609120]

    ADS  Google Scholar 

  57. Iguchi H., Nakamura T., Nakao K.I.: Is dark energy the only solution to the apparent acceleration of the present universe? Prog. Theor. Phys. 108, 809 (2002) [arXiv:astro-ph/0112419]

    Article  ADS  MATH  Google Scholar 

  58. Biswas T., Mansouri R., Notari A.: Nonlinear structure formation and apparent acceleration: an investigation. JCAP 0712, 017 (2007) [arXiv:astro-ph/0606703]

    ADS  Google Scholar 

  59. Tanimoto M., Nambu Y.: Luminosity distance-redshift relation for the LTB solution near the center. Class. Quant. Grav. 24, 3843 (2007) [arXiv:gr-qc/0703012]

    Article  MATH  Google Scholar 

  60. Alexander, S., Biswas, T., Notari, A., Vaid, D.: Local void vs dark energy: confrontation with WMAP and Type Ia Supernovae. arXiv:0712.0370 [astro-ph]

  61. Garcia-Bellido J., Haugboelle T.: Confronting Lemaître–Tolman–Bondi models with observationalcosmology. JCAP 0804, 003 (2008) [arXiv:0802.1523 [astro-ph]]

    ADS  Google Scholar 

  62. Garcia-Bellido, J., Haugboelle, T.: The radial BAO scale and cosmic shear, a new observable for inhomogeneous cosmologies. arXiv:0810.4939 [astro-ph].

  63. Zibin J.P.: Scalar perturbations on Lemaître–Tolman–Bondi spacetimes. Phys. Rev.D 78, 043504 (2008) [ar-Xiv:0804.1787[astro-ph]]

    Article  MathSciNet  ADS  Google Scholar 

  64. Alnes H., Amarzguioui M.: CMB anisotropies seen by an off-center observer in a spherically symmetric inhomogeneous universe. Phys. Rev. D 74, 103520 (2006) [arXiv:astro-ph/0607334]

    Article  ADS  Google Scholar 

  65. Pain, R., et al. [Supernova cosmology project collaboration]: The distant Type Ia supernova rate. Astrophys. J. 577, 120 (2002) [arXiv:astro-ph/0205476]

    Google Scholar 

  66. Tonry J.L.: Supernovae and dark energy. Phys. Scr. T 117, 11–16 (2005)

    Article  ADS  Google Scholar 

  67. Weinberg S.: Apparent luminosities in a locally inhomogeneous universe. Astrophys. J. 208, L1–L3 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  68. Ellis G.F.R., Bassett B.A., Dunsby P.K.S.: Lensing and caustic effects on cosmological distances. Class. Quant. Grav. 15, 2345 (1998) [arXiv:gr-qc/9801092]

    Article  MathSciNet  ADS  MATH  Google Scholar 

  69. Linder E.V.: Light propagation in generalized Friedmann universes. Astron. Astrophys. 206, 190 (1988)

    ADS  Google Scholar 

  70. Kantowski R., Vaughan T., Branch D.: The effects of inhomogeneities on evaluating the deceleration parameter q0. Astrophys. J. 447, 35 (1995) [arXiv:astro-ph/9511108]

    Article  ADS  Google Scholar 

  71. Kantowski, R.: The effects of inhomogeneities on evaluating the mass parameter Ω m and the cosmological constant Λ. arXiv:astro-ph/9802208

  72. Kantowski R.: The Lamé equation for distance-redshift in partially filled Beam Friedmann- Lemaître–Robertson-Walker cosmology. Phys. Rev. D 68, 123516 (2003) [arXiv:astro-ph/0308419]

    Article  ADS  Google Scholar 

  73. Sachs R.K.: Gravitational waves in general relativity. VI. The outgoing radiation condition. Proc. R. Soc. Lond. A 264, 309 (1961)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  74. Etherington I.M.H.: On the definition of distance in general relativity. Philos. Mag. ser. 7(15), 761 (1933)

    ADS  Google Scholar 

  75. Ellis G.F.R.: Relativistic cosmology. In: Sachs, R.K. (eds) Proceeding of School Enrico Fermi, General Relativity and Cosmology, p. 104. Academic Press, New York (1971)

    Google Scholar 

  76. Santos R.C., Lima J.A.S.: Clustering, angular size and dark energy. Phys. Rev. D 77, 083505 (2008) [ar-Xiv:0803.1865[astro-ph]]

    Article  ADS  Google Scholar 

  77. Peacock J.A.: Cosmological Physics. Cambridge University Press, London (1999)

    MATH  Google Scholar 

  78. Springel V. et al.: Simulating the joint evolution of quasars, galaxies and their large-scale distribution. Nature 435, 629 (2005) [arXiv:astro-ph/0504097]

    Article  ADS  Google Scholar 

  79. Sarkar S.: Is the evidence for dark energy secure? Gen. Relat. Gravit. 40, 269 (2008) [arXiv:0710.53071191 [astro-ph]]

    Article  ADS  MATH  Google Scholar 

  80. Blanchard A., Douspis M., Rowan-Robinson M., Sarkar S.: An alternative to the cosmological ‘concordance model’. Astron. Astrophys. 412, 35 (2003) [arXiv:astro-ph/0304237]

    Article  ADS  MATH  Google Scholar 

  81. Blanchard A., Douspis M., Rowan-Robinson M., Sarkar S.: Large-scale galaxy correlations as a test for dark energy. Astron. Astrophys. 449, 925 (2006) [arXiv:astro-ph/0512085]

    Article  ADS  Google Scholar 

  82. Hunt P., Sarkar S.: Multiple inflation and the WMAP ‘glitches’. Phys. Rev. D 70, 103518 (2004) [ar-Xiv:astro-ph/0408138]

    Article  ADS  Google Scholar 

  83. Hunt P., Sarkar S.: Multiple inflation and the WMAP ‘glitches’ II. Data analysis and cosmological parameter extraction. Phys. Rev. D 76, 123504 (2007) [arXiv:0706.2443[astro-ph]]

    Article  ADS  Google Scholar 

  84. Hunt, P., Sarkar, S.: Constraints on large scale voids from WMAP-5 and SDSS. arXiv:0807.4508 [astro-ph]

  85. Adams J.A., Ross G.G., Sarkar S.: Multiple inflation. Nucl. Phys. B 503, 405 (1997) [arXiv:hepph/9704286]

    Article  ADS  Google Scholar 

  86. Yao W.M. et al.: Review of particle physics. [Particle Data Group]. J. Phys. G 33, 1 (2006)

    Article  ADS  Google Scholar 

  87. Drexlin G.: [KATRIN Collaboration], KATRIN: direct measurement of a sub-eV neutrino mass. Nucl. Phys. Proc. Suppl. 145, 263 (2005)

    Article  Google Scholar 

  88. Elgarøy   Lahav O.: The role of priors in deriving upper limits on neutrino masses from the 2dFGRS and WMAP. JCAP 0304, 004 (2003) [arXiv:astro-ph/0303089]

    ADS  Google Scholar 

  89. Singh S., Ma C.P.: Neutrino clustering in cold dark matter halos: implications for ultra high energy cosmic rays. Phys. Rev. D 67, 023506 (2003) [arXiv:astro-ph/0208419]

    Article  ADS  Google Scholar 

  90. Hu W., Sugiyama N.: Small scale cosmological perturbations: an analytic approach. Astrophys. J. 471, 542 (1996) [arXiv:astro-ph/9510117]

    Article  ADS  Google Scholar 

  91. Rakic A., Schwarz D.J.: Correlating anomalies of the microwave sky: the good, the evil and the axis. Phys. Rev. D 75, 103002 (2007) [arXiv:astro-ph/0703266]

    Article  ADS  Google Scholar 

  92. Gurzadyan V.G., Kashin A., Bianco C.L., Khachatryan H., Yegorian G.: On axial and plane–mirror inhomogeneities in the WMAP3 cosmic microwave background maps. Mod. Phys. Lett. A 22, 2955 (2007) [arXiv:0709.0886 [astro-ph]]

    Article  ADS  MATH  Google Scholar 

  93. Freedman W.L. et al.: Final results from the hubble space telescope key project to measure the Hubble constant. Astrophys. J. 553, 47 (2001) [arXiv:astro-ph/0012376]

    Article  ADS  Google Scholar 

  94. Sandage A., Tammann G.A., Saha A., Reindl B., Macchetto F.D., Panagia N.: The Hubble constant: a summary of the HST Program for the luminosity calibration of Type Ia Supernovae by means of cepheids. Astrophys. J. 653, 843 (2006) [arXiv:astro-ph/0603647]

    Article  ADS  Google Scholar 

  95. Hasinger G., Schartel N., Komossa S.: Discovery of an ionized Fe-K edge in the z = 3.91 broad absorption line Quasar APM08279+5255 with XMM-Newton. Astrophys. J. 573, L77 (2002) [arXiv:astroph/0207005]

    Article  ADS  Google Scholar 

  96. Komossa, S., Hasinger, G.: The X-ray evolving universe: (ionized) absorption and dust, from nearby Seyfert galaxies to high-redshift quasars. arXiv:astro-ph/0207321

  97. Jain D., Dev A.: Age of high redshift objects—a Litmus Test for the dark energy models. Phys. Lett. B 633, 436 (2006) [arXiv:astro-ph/0509212]

    Article  ADS  Google Scholar 

  98. Fields, B., Sarkar, S.: Big-bang nucleosynthesis (PDG mini-review). arXiv:astro-ph/0601514

  99. Krauss L.M., Chaboyer B.: Age Estimates of Globular Clusters in the Milky Way: Constraints on Cosmology. Science 299, 65 (2003)

    Article  ADS  Google Scholar 

  100. Wang X.F., Wang L.F., Pain R., Zhou X., Li Z.W.: Determination of the Hubble constant, the intrinsic scatter of luminosities of Type Ia SNe, and evidence for non-standard dust in other galaxies. Astrophys. J. 645, 488 (2006) [arXiv:astro-ph/0603392]

    Article  ADS  Google Scholar 

  101. Schwarz, D.J., Weinhorst, B.: (An)isotropy of the Hubble diagram: comparing hemispheres. arXiv:0706.0165 [astro-ph]

  102. Seikel M., Schwarz D.J.: Howstrong is the evidence for accelerated expansion? JCAP 0802, 007 (2008) [ar- Xiv:0711.3180[astro-ph]]

    ADS  Google Scholar 

  103. McClure M.L., Dyer C.C.: Anisotropy in the Hubble constant as observed in the HST Extragalactic Distance Scale Key Project results. New Astron 12, 533 (2007) [arXiv:astro-ph/0703556]

    Article  ADS  Google Scholar 

  104. Gurzadyan, V.G., et al.: Kolmogorov CMB Sky. arXiv:0811.2732 [astro-ph]

  105. Kutschera M., Dyrda M.: Coincidence of universe age in LambdaCDMandMilne cosmologies. Acta Phys. Pol. B 38, 215 (2007) [arXiv:astro-ph/0605175]

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teppo Mattsson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mattsson, T. Dark energy as a mirage. Gen Relativ Gravit 42, 567–599 (2010). https://doi.org/10.1007/s10714-009-0873-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-009-0873-z

Keywords

Navigation