Skip to main content
Log in

Electromagnetic Methods of Lightning Detection

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

Both cloud-to-ground and cloud lightning discharges involve a number of processes that produce electromagnetic field signatures in different regions of the spectrum. Salient characteristics of measured wideband electric and magnetic fields generated by various lightning processes at distances ranging from tens to a few hundreds of kilometers (when at least the initial part of the signal is essentially radiation while being not influenced by ionospheric reflections) are reviewed. An overview of the various lightning locating techniques, including magnetic direction finding, time-of-arrival technique, and interferometry, is given. Lightning location on global scale, when radio-frequency electromagnetic signals are dominated by ionospheric reflections, is also considered. Lightning locating system performance characteristics, including flash and stroke detection efficiencies, percentage of misclassified events, location accuracy, and peak current estimation errors, are discussed. Both cloud and cloud-to-ground flashes are considered. Representative examples of modern lightning locating systems are reviewed. Besides general characterization of each system, the available information on its performance characteristics is given with emphasis on those based on formal ground-truth studies published in the peer-reviewed literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abarca SF, Corbosiero KL, Galarneau TJ Jr (2010) An evaluation of the Worldwide Lightning Location Network (WWLLN) using the National Lightning Detection Network (NLDN) as ground truth. J Geophys Res 115:D18206. doi:10.1029/2009JD013411

    Article  Google Scholar 

  • Betz H-D, Schmidt K, Oettinger WP (2009) LINET—an international VLF/LF lightning detection network in Europe. In: Betz H-D, Schumann U, Laroche P (eds) Lightning: principles, instruments and applications, chap 5. Springer, Dordrecht, NL

    Google Scholar 

  • Biagi CJ, Cummins KL, Krider EP, Kehoe KE (2007) NLDN performance in Southern Arizona, Texas and Oklahoma in 2003–2004. J Geophys Res 112:D05208. doi:1029/2006JD007341

    Article  Google Scholar 

  • Cianos N, Oetzel GN, Pierce ET (1972) A technique for accurately locating lightning at close ranges. J Appl Meteor 11:1120–1127

    Article  Google Scholar 

  • Cummins KL, Murphy MJ (2009) An overview of lightning locating systems: history, techniques, and data uses, with an in-depth look at the U.S. NLDN. IEEE Trans EMC 51(3):499–518

    Google Scholar 

  • Demetriades NWS, Murphy MJ, Cramer JA (2010), Validation of Vaisala’s Global Lightning Dataset (GLD360) over the continental United States. Preprints, 29th Conference Hurricanes and Tropical Meteorology, 10–14 May, Tucson, AZ, 6 p

  • Dowden RL, Brundell JB, Rodger CJ (2002) VLF lightning location by time of group arrival (TOGA) at multiple sites. J Atmos Solar Terr Phys 64(7):817–830

    Article  Google Scholar 

  • Dwyer JR (2005) A bolt out of the blue. Sci Am 292(5):64–71

    Article  Google Scholar 

  • Fleenor SA, Biagi CJ, Cummins KL, Krider EP, Shao X-M (2009) Characteristics of cloud-to-ground lightning in warm-season thunderstorms in the Great Plains. Atmos Res 91:333–352

    Article  Google Scholar 

  • Heckman S, Liu C (2010) The application of total lightning detection and cell tracking for severe weather prediction. In: Proceedings of GROUND’2010 & 4th LPE, Salvador, Brazil, Nov 2010, pp 234–240

  • Hendry J (1993) Panning for lightning (including comments on the photos by M.A. Uman). Weatherwise 45(6):19

    Article  Google Scholar 

  • Horner F (1954) The accuracy of the location sources of atmospherics by radio direction finding. Proc IEEE 101:383–390

    Google Scholar 

  • Horner F (1957) Very–low–frequency propagation and direction finding. Proc IEEE 101B:73–80

    Google Scholar 

  • Hutchins ML, Holzworth RH, Brundell JB, Rodger CJ (2012a) Relative detection efficiency of the World Wide Lightning Location Network. Radio Sci 47:RS6005. doi:10.1029/2012RS005049

  • Hutchins ML, Holzworth RH, Rodger CJ, Brundell JB (2012b) Far field power of lightning strokes as measured by the World Wide Lightning Location Network. J Atmos Oceanic Technol 29:1102–1110. doi:10.1175/JTECH-D-11-00174.1

    Article  Google Scholar 

  • Jerauld J, Rakov VA, Uman MA, Rambo KJ, Jordan DM, Cummins KL, Cramer JA (2005) An evaluation of the performance characteristics of the U.S. National Lightning Detection Network in Florida using rocket-triggered lightning. J Geophys Res 110:D19106. doi:10.1029/2005JD005924

    Article  Google Scholar 

  • Kidder RE (1973) The location of lightning flashes at ranges less than 100 km. J Atmos Terr Phys 35:283–290

    Article  Google Scholar 

  • Krider EP, Noggle RC, Uman MA (1976) A gated wideband magnetic direction finder for lightning return strokes. J Appl Meteor 15:301–306

    Article  Google Scholar 

  • Le Vine DM (1980) Sources of the strongest RF radiation from lightning. J Geophys Res 85:4091–4095

    Article  Google Scholar 

  • Lennon CL, Poehler HA (1982) Lightning detection and ranging. Astronaut Aeronautics 20:29–31

    Article  Google Scholar 

  • Lewis EA, Harvey RB, Rasmussen JE (1960) Hyperbolic direction finding with sferics of transatlantic origin. J Geophys Res 65:1879–1905

    Article  Google Scholar 

  • Lojou J-Y, Murphy MJ, Holle RL, Demetriades NWS (2009) Nowcasting of thunderstorms using VHF measurements. In: Betz H-D, Schumann U, Laroche P (eds) Lightning: principles, instruments and applications, Chap 11. Springer, Dordrecht, NL

  • Mach DM, MacGorman DR, Rust WD, Arnold RT (1986) Site errors and detection efficiency in a magnetic direction–finder network for locating lightning strikes to ground. J Atmos Ocean Tech 3:67–74

    Article  Google Scholar 

  • Mallick S, Rakov VA, Hill JD, Gamerota WR, Uman MA, Heckman S, Sloop CD, Liu C (2013) Calibration of the ENTLN against rocket-triggered lightning data. In: Proceedings of SIPDA 2013, Belo Horizonte, Brazil

  • Mardiana R, Kawasaki Z-I (2000) Broadband radio interferometer utilizing a sequential triggering technique for locating fast-moving electromagnetic sources emitted from lightning. IEEE Trans lnstrum Meas 49:376–381

    Article  Google Scholar 

  • Morimoto T, Hirata A, Kawasaki Z, Ushio T, Matsumoto A, Lee JH (2004) An operational VHF broadband digital interferometer for lightning monitoring. IEEJ Trans Fundam Mater 124(12):1232–1238

    Article  Google Scholar 

  • Naccarato KP, Pinto O Jr, Garcia SAM, Murphy M, Demetriades N, Cramer J (2010) Validation of the new GLD360 dataset in Brazil: first results, ILDC, Orlando, FL, 19–22 July, 2010, 6 p

  • Nag A, Rakov VA (2012) Positive lightning: an overview, new observations, and inferences. J Geophys Res 117:D08109. doi:10.1029/2012JD017545

    Article  Google Scholar 

  • Nag A, Rakov VA, Tsalikis D, Cramer JA (2010) On phenomenology of compact intracloud lightning discharges. J Geophys Res 115:D14115. doi:10.1029/2009JD012957

    Article  Google Scholar 

  • Nag A et al (2011) Evaluation of U.S. National Lightning Detection Network performance characteristics using rocket-triggered lightning data acquired in 2004–2009. J Geophys Res 116:D02123. doi:10.1029/2010JD014929

    Article  Google Scholar 

  • Nishino M, Iwai A, Kashiwagi M (1973) Location of the sources of atmospherics in and around Japan. In: Proceedings of Research Institute Atmospherics, Nagoya University, Japan, 20, pp 9–21

  • Orville RE (2008) Development of the National Lightning Detection Network. Bull Am Meteorol Soc 89(2):180–190

    Article  Google Scholar 

  • Pierce ET (1977) Atmospherics and radio noise. In: Golde RH (ed) Lightning, vol. 1, Physics of Lightning. Academic Press, New York, pp 351–384

  • Poelman DR, Schulz W, Vergeiner C (2013) Performance characteristics of distinct lightning detection networks covering Belgium. J Atmos Ocean Technol 30:942–951. doi:10.1175/JTECH-D-12-00162.1

    Article  Google Scholar 

  • Ponjola H, Makela A (2013) The comparison of GLD360 and EUCLID lightning location systems in Europe. Atmos Res 123:117–128

    Article  Google Scholar 

  • Proctor DE (1971) A hyperbolic system for obtaining VHF radio pictures of lightning. J Geophys Res 76:1478–1489

    Article  Google Scholar 

  • Rakov VA (1999) Lightning electric and magnetic fields. In: Proceedings of the 13th International Zurich Symposium on EMC, Zurich, Switzerland, 16–18 Feb, 1999, pp 561–566

  • Rakov VA (2005) Evaluation of the performance characteristics of lightning locating systems using rocket-triggered lightning. In: Proceedings of the International Symposium on Lightning Protection (VIII SIPDA), Sao Paulo, Brazil, pp 697–715

  • Rakov VA, Uman MA (2003) Lightning: Physics and Effects. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Ray PS, MacGorman DR, Rust WD, Taylor WL, Rasmussen LW (1987) Lightning location relative to storm structure in a supercell storm and a multicell storm. J Geophys Res 92:5713–5724

    Article  Google Scholar 

  • Rison W, Thomas RJ, Krehbiel PR, Hamlin T, Harlin J (1999) A GPS-based three-dimensional lightning mapping system: initial observations in central New Mexico. Geophys Res Lett 26:3573–3576

    Article  Google Scholar 

  • Said RK, Inan US, Cummins KL (2010) Long-range lightning geolocation using a VLF radio atmospheric waveform bank. J Geophys Res 115:D23108. doi:10.1029/2010JD013863

    Article  Google Scholar 

  • Said RK, Cohen MB, Inan US (2013) Highly intense lightning over the oceans: estimated peak currents from global GLD360 observations. J Geophys Res Atmos 118. doi:10.1002/jgrd.50508

  • Shao XM, Holden DN, Krehbiel PR (1996) Broadband radio interferometry for lightning observation. Geophys Res Lett 23:1917–1920

    Article  Google Scholar 

  • Smith DA, Shao XM, Holden DN, Rhodes CT, Brook M, Krehbiel PR, Stanley M, Rison W, Thomas RJ (1999) A distinct class of isolated intracloud discharges and their associated radio emissions. J Geophys Res 104(D4):4189–4212. doi:10.1029/1998JD200045

    Google Scholar 

  • Smith DA, Eack KB, Harlin J, Heavner MJ, Jacobson AR, Shao XM, Massey RS, Wiens KC (2002) The Los Alamos Sferic Array: a research tool for lightning investigations. J Geophys Res 107(D13):4183. doi:10.1029/2001JD000502

    Google Scholar 

  • Stolzenburg M, Marshall TC, Karunarathne S, Karunarathna N, Warner TA, Orville RE, Betz H-D (2012) Strokes of upward illumination occurring within a few milliseconds after typical lightning return strokes. J Geophys Res 117:D15203. doi:10.1029/2012JD017654

    Article  Google Scholar 

  • Taylor WL (1978) A VHF technique for space–time mapping of lightning discharge processes. J Geophys Res 83:3575–3583

    Article  Google Scholar 

  • Thomas RJ, Krehbiel PR, Rison W, Hunyady SJ, Winn WP, Hamlin T, Harlin J (2004) Accuracy of the Lightning Mapping Array. J Geophys Res 109:D14207. doi:10.1029/2004JD004549

    Article  Google Scholar 

  • Wilson N, Myers J, Cummins K, Hutchinson M, Nag A (2013) Lightning attachment to wind turbines in Central Kansas: video observations, correlation with the NLDN and in situ peak current measurements. European Wind Energy Association (EWEA), Vienna, Austria, 4–7 Feb, 2013, 8 p

Download references

Acknowledgments

This review is based on work that was done for the World Meteorological Organization (WMO) and for the Thunderstorm Effects on the Atmosphere–Ionosphere System (TEA-IS) Summer School in Torremolinos, Malaga, Spain, June 17–22, 2012, funded by the European Science Foundation (ESF). It was also supported in part by the NSF (Grant ATM-0852869), DARPA (Grant HR0011-10-1-0061), and GRF (Grant No. 14.B25.31.0023). Section 3 and parts of Sect. 2 draw heavily on the 2003 monograph “Lightning: Physics and Effects” (Cambridge University Press) co-authored with M.A. Uman. Electric field waveforms presented in Figs. 3 and 4 were recorded at Camp Blanding, Florida, by D.E. Crawford. A. Nag and two anonymous reviewers provided useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Rakov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rakov, V.A. Electromagnetic Methods of Lightning Detection. Surv Geophys 34, 731–753 (2013). https://doi.org/10.1007/s10712-013-9251-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-013-9251-1

Keywords

Navigation