Skip to main content
Log in

Analysis of the Characteristics of Low-Latitude GPS Amplitude Scintillation Measured During Solar Maximum Conditions and Implications for Receiver Performance

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

Ionospheric scintillations are fluctuations in the phase and/or amplitude of trans-ionospheric radio signals caused by electron density irregularities in the ionosphere. A better understanding of the scintillation pattern is important to make a better assessment of GPS receiver performance, for instance. Additionally, scintillation can be used as a tool for remote sensing of ionospheric irregularities. Therefore, the study of ionospheric scintillation has both scientific as well as technological implications. In the past few years, there has been a significant advance in the methods for analysis of scintillation and in our understanding of the impact of scintillation on GPS receiver performance. In this work, we revisit some of the existing methods of analysis of scintillation, propose an alternative approach, and apply these techniques in a comprehensive study of the characteristics of amplitude scintillation. This comprehensive study made use of 32 days of high-rate (50 Hz) measurements made by a GPS-based scintillation monitor located in São José dos Campos, Brazil (23.2°S, 45.9°W, −17.5° dip latitude) near the Equatorial Anomaly during high solar flux conditions. The variability of the decorrelation time (τ0) of scintillation patterns is presented as a function of scintillation severity index (S 4). We found that the values of τ0 tend to decrease with the increase of S 4, confirming the results of previous studies. In addition, we found that, at least for the measurements made during this campaign, averaged values of τ0 (for fixed S 4 index values) did not vary much as a function of local time. Our results also indicate a significant impact of τ0 in the GPS carrier loop performance for S 4 ≥ 0.7. An alternative way to compute the probability of cycle slip that takes into account the fading duration time is also presented. The results of this approach show a 38% probability of cycle slips during strong scintillation scenarios (S 4 close to 1 and τ0 near 0.2 s). Finally, we present results of an analysis of the individual amplitude fades observed in our set of measurements. This analysis suggests that users operating GPS receivers with C/N 0 thresholds around 30 dB-Hz and above can be affected significantly by low-latitude scintillation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Aarons J (1982) Global morphology of ionospheric scintillations. Proc IEEE 70(4):360–378. doi:10.1109/PROC.1982.12314

  • Aarons J (1985) Construction of a model of equatorial scintillation intensity. Radio Sci 20(3):397–402. doi:10.1029/RS020i003p00397

    Article  Google Scholar 

  • Aarons J (1991) The role of the ring current in the generation or inhibition of equatorial F layer irregularities during magnetic storms. Radio Sci 4:1131. doi:10.1029/91RS00473

    Google Scholar 

  • Aarons J, Mullen JP, Whitney HE, MacKenzie EM (1980) The dynamics of equatorial irregularity patch formation motion and decay. J Geophys Res 85(A1):139–149. doi:10.1029/JA085iA01p00139

    Google Scholar 

  • Aarons J, Whitney HE, MacKenzie E, Basu S (1981) Microwave equatorial scintillation intensity during solar maximum. Radio Sci 16(5):939–945. doi:10.1029/RS016i005p00939

    Google Scholar 

  • Abdu MA, Souza JR, Batista IS, Sobral JHA (2003) Equatorial spread F statistics and empirical representation for IRI: a regional model for the Brazilian longitude sector. Adv Space Res 31(3):703–716. doi:10.1016/S0273-1177(03)00031-0

  • Aquino M, Moore T, Dodson A, Waugh S, Souter J, Rodrigues FS (2005) Implications of ionospheric scintillation for GNSS users in Northern Europe. J Navig 58:241–256. doi:10.1017/S0373463305003218

    Google Scholar 

  • Balan N, Bailey GJ (1995) The equatorial plasma fountain and its effects—possibility of an additional layer. J Geophys Res 100:21421–21432. doi:10.1029/95JA01555

    Google Scholar 

  • Balan N, Bailey GJ (1996) Modeling studies of equatorial plasma fountain and equatorial anomaly. Adv Space Res 18:107–116. doi:10.1016/0273-1177(95)00848-9

  • Basu S, Basu S, Aarons J, Maclure JP, Cousins MD (1978) On the coexistence of kilometer- and meter-scale irregularities in the nighttime equatorial F region. J Geophys Res 83(A9):4219–4226. doi:10.1029/JA083iA09p04219

    Google Scholar 

  • Basu S, MacKenzie E, Basu S (1988) Ionospheric constraints on VHF/UHF communication links during solar maximum and minimum periods. Radio Sci 23:363–378. doi:10.1029/RS023i003p00363

    Google Scholar 

  • Beach TL (1998) Global positioning system studies of equatorial scintillations. Ph.D. Thesis, Cornell University, 335p

  • Beach TL, Kintner PM (2001) Development and use of a GPS ionospheric scintillation monitor. IEEE Trans Geosci Remote Sens 39:918–928. doi:10.1109/36.921409

    Google Scholar 

  • Beniguel Y, Forte B, Radicella SM, Strangeways HJ, Gherm VE, Zernov NN (2004) Scintillations effects on satellite to Earth links for telecommunication and navigation purposes. Ann Geophys 47:1179–1199. doi:10.1.1.127.2509

    Google Scholar 

  • Bilitza D (2003) International reference ionosphere 2000: examples of improvements and new features. Adv Space Res 31(#3):757–767. doi:10.1016/S0273-1177(03)00020-6

  • Bilitza D, Reinisch B (2008) International reference ionosphere 2007: improvements and new parameters. J Adv Space Res 42(4):599–609. doi:10.1016/j.asr.2007.07.048

    Article  Google Scholar 

  • Bilitza D, Rawer K, Bossy L, Gulyaeva T (1993) International reference ionosphere—past, present, future: I. Electron density. Adv Space Res 13(#3):3–13. doi:10.1016/0273-1177(93)90240-C

    Google Scholar 

  • Bishop G, Howell D, Coker C, Mazzella A, Jacobs D, Fremouw E, Secan J, Rahn B, Curtis C, Quinn J, Groves K, Basu S, Smitham M (1998) Test bed for evaluation of GPS receivers’ performance in ionospheric scintillation–a progress report. In: Proceedings of ION GPS 1998. Institute of Navigation, Long Beach

  • Briggs BH, Parkin IA (1963) On the variation of radio star and satellite scintillations with zenith angle. J Atmos Terr Phys 25:339–366. doi:10.1016/0021-9169(63)90150-8

    Google Scholar 

  • Carrano CS, Groves KM (2010) Temporal decorrelation of GPS satellite signals due to multiple scattering from ionospheric irregularities. In: Proceedings of the 2010 Institute of Navigation ION GNSS meeting

  • Conker RS, El-Arini MB, Hegarty CJ, Hsiao T (2003) Modeling the effects of ionospheric scintillation on GPS/satellite-based augmentation system availability. Radio Sci 38:23. doi:10.1029/2000RS002604

  • Davies K (1990) Ionospheric radio. IEE Electromagnetic Waves Series 31

  • De Paula ER, Rodrigues FS, Iyer KN, Kantor IJ, Abdu MA, Kintner PM, Ledvina BM, Kil H (2003) Equatorial anomaly effects on GPS scintillations in Brazil. Adv Space Res 31(3):749–754. doi:10.1016/S0273-1177(03)00048-6

    Google Scholar 

  • de Rezende LFC, Paula ER, Kantor IJ, Kintner PM (2007) Mapping and survey of plasma bubbles over Brazilian territory. J Navig 60:69–81. doi:10.1017/S0373463307004006

    Google Scholar 

  • Dubey S, Wahi R, Gwal AK (2006) Ionospheric effects on GPS positioning. Adv Space Res 38(11):2478–2484. doi:10.1016/j.asr.2005.07.030

    Google Scholar 

  • Forte B (2005) Optimum detrending of raw GPS data for scintillation measurements at auroral latitudes. J Atmos Solar Terr Phys 67(12):1100–1109. doi:10.1016/j.jastp.2005.01.011

    Google Scholar 

  • Forte B, Radicella SM (2002) Problems in data treatment for ionospheric scintillation measurements. Radio Sci 37(6):5. doi:10.1029/2001RS002508

    Google Scholar 

  • Fremouw EJ, Leadabrand RL, Livingston RC, Cousins MD, Rino CL, Fair BC, Long RA (1978) Early results from the DNA Wideband satellite experiment—complex-signal scintillation. Radio Sci 13:167–187. doi:10.1029/RS013i001p00167

    Google Scholar 

  • Fremouw EJ, Livingston RC, Miller DA (1980) On the statistics of scintillating signals. J Atmos Terr Phys 42:717–731. doi:10.1016/0021-9169(80)90055-0

    Google Scholar 

  • Ganguly S, Jovancevic A, Brown A, Kirchner M, Zigic S, Beach T, Groves KM (2004) Ionospheric scintillation monitoring and mitigation using a software GPS receiver. Radio Sci 39:9. doi:10.1029/2002RS002812

  • Groves KM, Basu S, Quinn JM, Pedersen TR, Falinski K, Brown A, Silva R, Ning P (2000) A comparison of GPS performance in a scintillating environment at Ascension Island. In: Proceedings of ION GPS 2000. Institute of Navigation

  • Hegarty C, El-Arini MB, Kim T, Ericson S (2001) Scintillation modeling for GPS-Wide area augmentation system receivers. Radio Sci 36:1221–1231. doi:10.1029/1999RS002425

    Google Scholar 

  • Hinks JC, Humphreys TE, O’Hanlon B, Psiaki ML, Kintner PM Jr (2008) Evaluating GPS receiver robustness to ionospheric scintillation. In: Proceedings of the 21st international technical meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2008), Savannah, GA, pp 309–320

  • Holmes JK (1982) Coherent spread spectrum systems. Wiley, London

    Google Scholar 

  • Humphreys TE, Psiaki ML, Ledvina BM, Kintner PM Jr (2005) GPS carrier tracking loop performance in the presence of ionospheric scintillations. In: Proceedings of ION GNSS 2005. Long Beach

  • Humphreys TE, Psiaki ML, Hinks JC, Kintner PM Jr (2009) Simulating ionosphere-induced scintillation for testing GPS receiver phase tracking loops. IEEE J Sel Top Signal Process 3:707–715. doi:10.1109/JSTSP.2009.2024130

    Google Scholar 

  • Humphreys TE, Psiaki ML, Kintner PM Jr (2010) Modeling the effects of ionospheric scintillation on GPS carrier phase tracking. IEEE Trans Aerosp Electron Syst 46:1624–1637. doi:10.1109/TAES.2010.5595583

    Google Scholar 

  • Kelley MC (1989) The Earth’s ionosphere: plasma physics and electrodynamics. International Geophysics Series, vol 43. Academic Press, San Diego

    Google Scholar 

  • Kintner PM, Kil H, Beach TL, de Paula ER (2001) Fading timescales associated with GPS signals and potential consequences. Radio Sci 36:731–743. doi:10.1029/1999RS002310

    Article  Google Scholar 

  • Kintner PM, Ledvina BM, de Paula ER, Kantor IJ (2004) Size, shape, orientation, speed, and duration of GPS equatorial anomaly scintillations. Radio Sci 39:RS2012. doi:10.1029/2003RS002878

    Article  Google Scholar 

  • Kintner PM, Ledvina BM, Paula ER (2005) An amplitude scintillation test pattern standard for evaluating GPS receiver performance. Space Weather 3:6. doi:10.1029/2003SW000025

  • Kintner PM, Ledvina BM, de Paula ER (2007) GPS and ionospheric scintillations. Space Weather 5:S09003. doi:10.1029/2006SW000260

    Article  Google Scholar 

  • Klobuchar JA (1987) Ionospheric time-delay algorithm for single-frequency GPS users. IEEE Trans Aerosp Electron Syst 23:325–331. doi:10.1109/TAES.1987.310829

    Google Scholar 

  • Klobuchar JA (1996) Ionospheric effects on GPS. In: Parkinson BW, Spilker JJ Jr (eds) The global positioning system: theory and applications, chap 12. American Institute of Aeronautics and Astronautics, Inc., 370 L’Enfant Promenade, SW, Washington

    Google Scholar 

  • Klobuchar JA, Anderson DN, Doherty PH (1991) Model studies of the latitudinal extent of the equatorial anomaly during equinoctial conditions. Radio Sci 26(4):1025–1047. doi:10.1029/91RS00799

    Google Scholar 

  • Knight M, Finn A (1998) The effect of ionospheric scintillation on GPS. In: Proceedings of ION GPS 1998. Institute of Navigation, Nashville

  • Knight M, Cervera M, Finn A (2000) A comparison of measured GPS performance with model based predictions in an equatorial scintillation environment. In: Proceedings of the IAIN world congress and the 56th annual meeting of The Institute of Navigation, San Diego, pp 588–601

  • Martinis CR, Mendillo MJ, Aarons J (2005) Toward a synthesis of equatorial spread F onset and suppression during geomagnetic storms. J Geophys Res 110:A07306. doi:10.1029/2003JA010362

    Article  Google Scholar 

  • Mason LJ (1987) Error probability evaluation for systems employing differential detection in a Rician fast fading environment and Gaussian noise. IEEE Trans Commun COM-35(1):39–46. doi:10.1109/TCOM.1987.1096662

    Google Scholar 

  • Morrissey TN, Shallberg KW, Van Dierendonck AJ, Nicholson MJ (2004) GPS receiver performance characterization under realistic ionospheric phase scintillation environments. Radio Sci 39:RS1S20. doi:10.1029/2002RS002838

    Article  Google Scholar 

  • Rodrigues FS, de Paula ER, Abdu MA, Jardim AC, Iyer KN, Kintner PM, Hysell DL (2004) Equatorial spread F irregularity characteristics over São Luís, Brazil using VHF radar and GPS scintillation techniques. Radio Sci 39:RS1S31. doi:10.1029/2002RS002826

    Article  Google Scholar 

  • Schunk RW, Nagy AF (2000) Ionospheres: physics, plasma physics, and chemistry. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Seo J, Walter T, Chiou TY, Enge P (2009) Characteristics of deep GPS signal fading due to ionospheric scintillation for aviation receiver design. Radio Sci 44:10. doi:10.1029/2008RS004077

  • Seo J, Walter T, Enge P (2011) Availability impact on GPS aviation due to strong ionospheric scintillation. IEEE Trans Aerosp Electron Syst 47(3):1963–1973. doi:10.1109/TAES.2011.5937276

    Article  Google Scholar 

  • Simon MK, Alouini M (2006) Digital communications over fading channels. Wiley, New York

    Google Scholar 

  • So H, Choi S, Jeon S, Kee C (2009) On-line detection of tracking loss in aviation GPS receivers using frequency-lock loops. J Navig 62:263–281. doi:10.1017/S0373463308005171

    Google Scholar 

  • Sobral JHA, Abdu MA, Takahashi H, Taylor MJ, de Paula ER, Zamlutti CJ, Aquino MG, Borba GL (2002) Ionospheric plasma bubble climatology over Brazil based on 22 years (1977–1998) of 630 nm airglow observations. J Atmos Sol Terr Phys 64(12–14):1517–1524. doi:10.1016/S1364-6826(02)00089-5

    Article  Google Scholar 

  • Van Dierendonck AJ, Klobuchar JA, Hua Q (1993) Ionospheric scintillation monitoring using commercial single frequency C/A code receivers. In: Proceedings of the 6th international technical meeting of the Satellite Division of The Institute of Navigation (ION GPS 1993), Salt Lake City, pp 1333–1342

  • Whalen JA (2009) The linear dependence of GHz scintillation on electron density observed in the equatorial anomaly. Ann Geophys 27:1755–1761. doi:10.5194/angeo-27-1755-2009

    Google Scholar 

  • Yang L, Elmas Z, Hill C, Aquino M, Moore T (2011) An innovative approach for atmospheric error mitigation using new GNSS signals. J Navig 64:S211–S232. doi:10.1017/S0373463311000373

    Article  Google Scholar 

  • Yeh KC, Liu CH (1982) Radio wave scintillation in the ionosphere. Proc IEEE 70(4):324–360. doi:10.1109/PROC.1982.12313

    Google Scholar 

  • Zhang L, Morton YT (2009) Tracking GPS signals under ionosphere scintillation conditions In: Proceedings of the 22nd international technical meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2009), Savannah, pp 227–234

Download references

Acknowledgments

The authors are grateful to INPE technical staff for maintaining the continuous operation of the scintillation monitor in São José dos Campos. FSR would like to thank the support from NSF through Award AGS-1024849, which allowed this collaborative work with INPE and ITA. AOM wishes to thank the Brazilian Institute of Aeronautics and Space (IAE), where he works as a research engineer, for supporting his doctoral studies at ITA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alison de Oliveira Moraes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Oliveira Moraes, A., da Silveira Rodrigues, F., Perrella, W.J. et al. Analysis of the Characteristics of Low-Latitude GPS Amplitude Scintillation Measured During Solar Maximum Conditions and Implications for Receiver Performance. Surv Geophys 33, 1107–1131 (2012). https://doi.org/10.1007/s10712-011-9161-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-011-9161-z

Keywords

Navigation