Skip to main content

Advertisement

Log in

3-D Global Induction in the Oceans and Solid Earth: Recent Progress in Modeling Magnetic and Electric Fields from Sources of Magnetospheric, Ionospheric and Oceanic Origin

  • Original Paper
  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

Electromagnetic induction in the Earth’s interior is an important contributor to the near-Earth magnetic and electric fields. The oceans play a special role in this induction due to their relatively high conductivity which leads to large lateral variability in surface conductance. Electric currents that generate secondary fields are induced in the oceans by two different processes: (a) by time varying external magnetic fields, and (b) by the motion of the conducting ocean water through the Earth’s main magnetic field. Significant progress in accurate and detailed predictions of the electric and magnetic fields induced by these sources has been achieved during the last few years, via realistic three-dimensional (3-D) conductivity models of the oceans, crust and mantle along with realistic source models. In this review a summary is given of the results of recent 3-D modeling studies in which estimates are obtained for the magnetic and electric signals at both the ground and satellite altitudes induced by a variety of natural current sources. 3-D induction effects due to magnetospheric currents (magnetic storms), ionospheric currents (Sq, polar and equatorial electrojets), ocean tides, global ocean circulation and tsunami are considered. These modeling studies demonstrate that the 3-D induction (ocean) effect and motionally-induced signals from the oceans contribute significantly (in the range from a few to tens nanotesla) to the near-Earth magnetic field. A 3-D numerical solution based on an integral equation approach is shown to predict these induction effects with the accuracy and spatial detail required to explain observations both on the ground and at satellite altitudes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40

Similar content being viewed by others

References

  • Ashour AA (1965) Electromagnetic induction in finite thin sheets. Quart J Mech Appl Math 18:73–86

    Article  Google Scholar 

  • Avdeev DB, Kuvshinov AV, Pankratov OV, Newman GA (2000) 3D EM modeling using fast integral equation approach with Krylov subspaces accelerator. Extended abstracts book, vol 2, 62nd EAGE Conference & Technical Exhibition, Glasgow, Scotland, P-183

  • Avdeev DB, Kuvshinov AV, Pankratov OV, Newman GA (2002) Three-dimensional induction logging problems, part I: an integral equation solution and model comparisons. Geophysics 67:413–426

    Article  Google Scholar 

  • Baumjohann W, Treumann R (1996) Basic space plasma physics. Imperial College Press, London

    Google Scholar 

  • Beamish D, Hewson-Browne RC, Kendall PC, Malin SRC, Quinney DA (1980) Induction in arbitrarily shaped oceans IV: Sq for a simple oceans. Geophys J R Astr Soc 60:435–443

    Google Scholar 

  • Bullard EC, Parker RL (1970) Electromagnetic induction in the oceans. In: Maxwell AE (ed) The sea, vol 4, Chap 18. John Wiley, New York, pp 695–730

  • Chapman S (1951) The equatorial electrojet as detected from the abnormal electric current distribution above Huancayo and elsewhere. Arch Meteorol Geophys Bioklimatol Sec A4:368–390

    Article  Google Scholar 

  • Duffus HJ, Fowler NR (1974) On planetary voltages, ocean tides, and electric conductivity below the Pacific. Can J Earth Sci 11:873–892

    Google Scholar 

  • Erofeeva S, Egbert G (2002) Efficient inverse modeling of barotropic ocean tides. J Ocean Atmos Technol 19:183–204

    Article  Google Scholar 

  • Everett ME, Schultz A (1996) Geomagnetic induction in a heterogeneous sphere: azimutally symmetric test computations and the response of an undulating 660-km discontinuity. J Geophys Res 101:2765–2783

    Article  Google Scholar 

  • Everett ME, Constable S, Constable CG (2003) Effects of near-surface conductance on global satellite induction responses. Geophys J Int 153:277–286

    Article  Google Scholar 

  • Fainberg EB, Kuvshinov AV, Singer BSh (1990) Electromagnetic induction in a spherical earth with non-uniform oceans and continents in electric contact with the underlying medium – I. Theory, method and example. Geophys J Int 102:273–281

    Article  Google Scholar 

  • Flosadottir AH, Larsen JC, Smith JT (1997) Motional induction in North Atlantic circulation models. J Geophys Res 102:10353–10372

    Article  Google Scholar 

  • Friis-Christensen E, Lühr H, Hulot G (2006) Swarm: a constellation to study the Earth’s magnetic field. Earth, Planets Space 58:351–358

    Google Scholar 

  • Fujii I, Utada H (2000) On geoelectric potential variations over a planetary scale. Mem Kakioka Magn Obs 29:1–71

    Google Scholar 

  • Glazman R, Golubev Y (2005) Variability of the ocean-induced magnetic field predicted at sea surface and at satellite altitudes. J Geophys Res 110:C12011. doi:10.1029/2005JC002926

    Article  Google Scholar 

  • Grammatica N, Tarits P (2002) Contribution at satellite altitude of electromagnetically induced anomalies arising from a three-dimensional heterogeneously conducting Earth, using Sq as an inducing source field. Geophys J Int 151:913–923

    Article  Google Scholar 

  • Hamano Y (2002) A new time-domain approach for the electromagnetic induction problem in a three-dimensional heterogeneous earth. Geophys J Int 150:753–769

    Article  Google Scholar 

  • Harvey RR, Larsen J, Montaner R (1977) Electric field recording of tidal currents in the Strait of Magellan. J Geophys Res 82:3472–3476

    Article  Google Scholar 

  • Hewson-Brown RC, Kendall PC (1978) Some new ideas on induction in infinitely-conducting oceans of arbitrary shapes. Geophys J R Astr Soc 53:431–444

    Google Scholar 

  • Hobbs BA (1981) A comparison of Sq analyses with model calculations. Geophys J R Astr Soc 66:435–447

    Google Scholar 

  • Junge A (1988) The telluric field in northern Germany induced by tidal motion in North Sea. Geophys J Int 95:523–533

    Article  Google Scholar 

  • Koyama T, Shimizu H, Utada H (2002) Possible effects of lateral heterogeneity in the D′′ layer on electromagnetic variations of core origin. Phys Earth Planet Int 129:99–116

    Article  Google Scholar 

  • Kuvshinov A (2007) Global 3-D EM induction in the solid Earth and the oceans. In: Spichak V (ed) Electromagnetic sounding of the Earth’s interior, vol 1. Elsevier, Holland, pp 4–24

    Google Scholar 

  • Kuvshinov A (2008) 3-D integral equation analysis of the global Schumann resonance. J Atmos Phys (in preparation)

  • Kuvshinov A, Olsen N (2005a) Modelling the ocean effect of geomagnetic storms at ground and satellite altitude. In: Reigber Ch, Lühr H, Schwintzer P, Wickert J (eds) Earth observation with CHAMP. Results from three years in orbit. Springer-Verlag, Berlin, pp 353–358

    Chapter  Google Scholar 

  • Kuvshinov A, Olsen N (2005b) 3-D modelling of the magnetic fields due to ocean tidal flow. In: Reigber Ch, Lühr H, Schwintzer P, Wickert J (eds) Earth observation with CHAMP. Results from three years in orbit. Springer-Verlag, Berlin, pp 359–366

    Chapter  Google Scholar 

  • Kuvshinov A, Olsen N (2006) A global model of mantle conductivity derived from 5 years of CHAMP, Ørsted and SAC-C magnetic data. Geophys Res Lett 33:L18301. doi:10.1029/2006GL027083

    Article  Google Scholar 

  • Kuvshinov AV, Pankratov OV, Singer BSh (1990) The effect of the oceans and sedimentary cover on global magnetovariational field distribution. Pure Appl Geophys 134:533–540

    Article  Google Scholar 

  • Kuvshinov AV, Avdeev DB, Pankratov OV (1999) Global induction by Sq and Dst sources in the presence of oceans: bimodal solutions for non-uniform spherical surface shells above radially symmetric Earth models in comparison to observations. Geophys J Int 137:630–650

    Article  Google Scholar 

  • Kuvshinov AV, Avdeev DB, Pankratov OV, Golyshev SA, Olsen N (2002a) Modelling electromagnetic fields in 3-D spherical earth using fast integral equation approach. In: Zhdanov MS, Wannamaker P (eds) Three-dimensional electromagnetics. Elsevier, Holland, pp 43–54

    Chapter  Google Scholar 

  • Kuvshinov AV, Olsen N, Avdeev DB, Pankratov OV (2002b) Electromagnetic induction in the oceans and the anomalous behavior of coastal C-responses for periods up to 20 days. Geophys Res Lett 29(12). doi:10.1029/2001GL014409

  • Kuvshinov AV, Utada H, Avdeev DB, Koyama T (2005) 3-D modelling and analysis of Dst C-responses in the North Pacific Ocean region, revisited. Geophys J Int 160:505–526

    Article  Google Scholar 

  • Kuvshinov A, Sabaka T, Olsen N (2006a) 3-D electromagnetic induction studies using the Swarm constellation: mapping conductivity anomalies in the Earth’s mantle. Earth Planets Space 58:417–427

    Google Scholar 

  • Kuvshinov A, Junge A, Utada H (2006b) 3-D modelling the electric field due to ocean tidal flow and comparison with observations. Geophys Res Lett. doi: 10.1029/2005GL025043

  • Kuvshinov A, Manoj C, Olsen N, Sabaka T (2007) On induction effects of geomagnetic daily variations from equatorial electrojet and solar quiet sources at low and middle latitudes. J Geophys Res 112:B10102. doi:10.1029/2007JB004955

    Article  Google Scholar 

  • Langel RA, Estes RH (1985) Large-scale near-Earth magnetic fields from external sources and the corresponding induced internal field. J Geophys Res 90:2487–2494

    Article  Google Scholar 

  • Lanzerotti LJ, Sayres CH, Medford LV, Kraus JS, Maclennan CJ (1992) Earth potential over 4000 km between Hawaii and California. Geophys Res Lett 19:1177–1180

    Article  Google Scholar 

  • Laske G, Masters G (1997) A global digital map of sediment thickness. EOS Trans. AGU 78 F483

  • Maus S, Kuvshinov A (2004) Ocean tidal signals in observatory and satellite magnetic measurements. Geophys Res Lett 31. doi: 10.1029/2004GL000634

  • Maus SM, Rother M, Hemant K, Stolle C, Lühr H, Kuvshinov A, Olsen N (2006) Earth’s lithospheric magnetic field determined to spherical harmonic degree 90 from CHAMP satellite measurements. Geophys J Int 165:319–330

    Article  Google Scholar 

  • Manoj C, Kuvshinov AV, Maus S, Lühr H (2006a) Ocean circulation generated magnetic signals. Earth Planets Space 58:429–437

    Google Scholar 

  • Manoj C, Neetu S, Kuvshinov AV, Harinarayana T (2006b) Magnetic fields, generated by the Indian ocean Tsunami. In: Proceedings of the first swarm international science meeting, Nant, France

  • Manoj C, Kuvshinov AV, Neetu S, Harinarayana T (2008) Can undersea voltage measurements detect tsunamis? Earth Planets Space (submitted)

  • Martinec Z (1999) Spectral-finite element approach to three-dimensional electromagnetic induction in a spherical Earth. Geophys J Int 136:229–250

    Article  Google Scholar 

  • Neubert T, Mandea M, Hulot G, von Frese R, Primdahl F, Jørgensen JL, Friis-Christensen E, Stauning P, Olsen N, Risbo T (2001) Ørsted satellite captures high-precision geomagnetic field data: EOS 82, No. 7, pp 81, 87, 88

  • Olsen N (1999) Induction studies with satellite data. Surv Geophys 20:309–340

    Article  Google Scholar 

  • Olsen N (2002) A model of the geomagnetic field and its secular variation for epoch 2000 estimated from Orsted data. Geophys J Int 149:454–462

    Article  Google Scholar 

  • Olsen N, Kuvshinov A (2004) Modelling the ocean effect of geomagnetic storms. Earth Planets Space 56:525–530

    Google Scholar 

  • Onwumechili CA (1997) The equatorial electrojet. Gordon & Breach, Chap 2

  • Palshin N, Vanyan L, Yegorov I, Lebedev K (1999) Electric field induced by the global ocean circulation. Phys Solid Earth 35:1028–1035

    Google Scholar 

  • Pankratov OV, Avdeev DB, Kuvshinov AV (1995) Electromagnetic field scattering in a heterogeneous earth: a solution to the forward problem. Phys Solid Earth 31:201–209

    Google Scholar 

  • Pankratov OV, Kuvshinov AV, Avdeev DB (1997) High-performance three-dimensional electromagnetic modeling using modified Neumann series. Anisotropic case. J Geomagn Geoelectr 49:1541–1548

    Google Scholar 

  • Plotkin VV (2004) Electromagnetic field in a nonuniform sphere (3D case), Russian. Geol Geophys 45(9):1107–1120

    Google Scholar 

  • Pulkkinen A, Engels M (2005) The role of 3D geomagnetic induction in the determination of the ionospheric currents from ground-based data. Ann Geophysicae 23:909–917

    Article  Google Scholar 

  • Pulkkinen A, Amm O, Viljanen A and the Bear Working group (2003) Ionospheric equivalent current distributions determined with the method of spherical elementary current systems. J Geophys Res 108(A2):1053

    Google Scholar 

  • Rastogi RG (2004) Electromagnetic induction by the equatorial electrojet. Geophys J Int 158:16–31

    Article  Google Scholar 

  • Reigber C, Lühr H, Schwintzer P (2002) CHAMP mission status. Adv Space Res 30:129–134

    Article  Google Scholar 

  • Riedel K, Sidorenko A (1995) Minimum bias multiple taper spectral estimation. IEEE Trans Signal Process 43:188–195

    Article  Google Scholar 

  • Rooney WJ (1938) Lunar diurnal variation in Earth currents at Huancayo and Tuscon. J Geophys Res 43:107–118

    Article  Google Scholar 

  • Rostoker G, Friedrich E, Dobbs M (1997) Physics of magnetic storms. In: Tsurutani BT, Gonzales WD, Kamide Y, Arballo JK (eds) 98 Geophysical monograph series, AGU, Washington DC, pp 149–160

  • Sabaka T, Olsen N, Purucker M (2004) Extending comprehensive models of the Earth’s magnetic field with Orsted and CHAMP data. Geophys J Int 159:521–547

    Article  Google Scholar 

  • Sindhu BI, Suresh A, Unnikrishnan N, Bhatkar S, Neetu GS (2007) Michael, improved bathymetric datasets for the shallow water regions in the Indian Ocean. J Earth Syst Sci 116:261–274

    Article  Google Scholar 

  • Singer BSh (1995) Method for solution of Maxwell’s equations in non-uniform media. Geophys J Int 120:590–598

    Article  Google Scholar 

  • Schmucker U (1985a) Electrical properties of the Earth’s interior. In: Landolt-Bornstein, New Series, 5/2b. Springer-Verlag, Berlin, pp 370–395

  • Schmucker U (1985b) Magnetic and electric fields due to electromagnetic induction by external sources. In: Landolt-Bornstein, New Series, 5/2b. Springer-Verlag, Berlin, pp 100–125

  • Schmucker U (1999) A spherical harmonic analysis of solar daily variations in the years 1964–1965: response estimates and source fields for global induction – I. Methods. Geophys J Int 136:439–454

    Article  Google Scholar 

  • Stephenson D, Bryan K (1992) Large-scale electric and magnetic fields generated by the oceans. J Geophys Res 97:15467–15480

    Article  Google Scholar 

  • Takeda M (1991) Electric currents in the ocean induced by the geomagnetic Sq field and their effect on the estimation of mantle conductivity. Geophys J Int 104:381–385

    Article  Google Scholar 

  • Takeda M (1993) Electric currents in the ocean induced by model Dst field and their effects on the estimation of mantle conductivity. Geophys J Int 114:289–292

    Article  Google Scholar 

  • Tarits P (1994) Electromagnetic studies of global geodynamic processes. Surv Geophys 15:209–238

    Google Scholar 

  • Tarits P, Grammatica N (2000) Electromagnetic induction effects by the solar quiet magnetic field at satellite altitude. Geophys Res Lett 27:4009–4012

    Article  Google Scholar 

  • Tyler RH (2005) A simple formula for estimating the magnetic fields generated by tsunami flow. Geophys Res Lett 32:L09608. doi:10.1029/2005GL022429

    Article  Google Scholar 

  • Tyler R, Mysak LA, Oberhuber J (1997) Electromagnetic fields generated by a 3-D global ocean circulation. J Geophys Res 102:5531–5551

    Article  Google Scholar 

  • Tyler R, Sanford TB, Oberhuber J (1998) Magnetic fields generated by ocean flow. AGU Fall Conference

  • Tyler R, Maus S, Lühr H (2003) Satellite observations of magnetic fields due to ocean tidal flow. Science 299:239–240

    Article  Google Scholar 

  • Utada H, Koyama T, Shimizu H, Chave A (2003) A semi-global reference model for electrical conductivity in the mid-mantle beneath the north Pacific region. Geophys Res Lett 30(4). doi: 10.1029/2002GL016092

  • Uyeshima M, Schultz A (2000) Geoelectromagnetic induction in a heterogeneous sphere: a new 3-D forward solver using a staggered-grid integral formulation. Geophys J Int 140:636–650

    Article  Google Scholar 

  • Vanyan LL, Palshin NA, Repin IA (1995) Deep magnetottelluric sounding with the use of the Australia-New Zealand cable 2. Interpretation. Phys Solid Earth 31:417–421

    Google Scholar 

  • Velimsky J, Everett ME (2005) Electromagnetic induction by Sq ionospheric currents in a heterogeneous Earth: modelling using ground-based and satellite measurements: In: Reigber Ch, Lühr H, Schwintzer P, Wickert J (eds) Earth observation with CHAMP. Results from three years in orbit. Springer-Verlag, pp 341–347

  • Velimsky J, Martinec Z (2005) Time-domain, spherical harmonic-finite element approach to transient three-dimensional geomagnetic induction in a spherical heterogeneous Earth. Geophys J Int 161:81–101

    Article  Google Scholar 

  • Velimsky J, Everett ME, Martinec Z (2003) The transient Dst electromagnetic induction signal at satellite altitudes for a realistic 3-D electrical conductivity in the crust and mantle. Geophys Res Lett doi:10.1029/2002GL016,671

  • Vivier F, Maier-Reimer E, Tyler RH (2004) Simulations of magnetic fields generated by the Antarctic Circumpolar Current at satellite altitude: can geomagnetic measurements be used to monitor the flow? Geophys Res Lett 31. doi:10.1029/2004GL019804

  • Wang H, Lühr H, Ma SY (2005) Solar zenith angle and merging electric field control of field-aligned currents: a statistical study of the southern hemisphere. J Geophys Res 110 A3, A03306 doi:10.1029/2004JA010530

  • Weidelt P (1972) The inverse problem of geomagnetic induction. Z Geophys 38:257–289

    Google Scholar 

  • Weiss CJ, Everett ME (1998) Geomagnetic induction in a heterogeneous sphere: fully three-dimensional test computations and the response of a realistic distribution of oceans and continents. Geophys J Int 135:650–662

    Article  Google Scholar 

  • Yoshimura R, Oshiman N (2002) Edge-based finite element approach to the simulation of geoelectromagnetic induction in a 3-D sphere. Geophys Res Lett 29(2). doi: 10.1029/2001GL014121

Download references

Acknowledgements

I wish to express my sincere thanks to the Managing Editor of the journal, Prof. Michael Rycroft, who offered me the opportunity to prepare and deliver this review. Most of the results presented in this review have been obtained in a close collaboration with Nils Olsen and Chandrasekharan Manoj. The author appreciates very much their contributions. I thank Chris Finlay who helped me to improve the English presentation of this review and made many valuable comments. I am grateful to Bob Parker and Cathy Constable for providing the multi-taper code. I wish to thank Richard Holme and an anonymous referee for helpful suggestions on how to improve the manuscript. This work has been supported in part by European Space Agency through contract No. 20944/07/NL/JA and by the Russian Foundation for Basic Research under grant No. 06-05-64329-a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Kuvshinov.

Additional information

On leave from Institute of Terrestrial Magnetism, Ionosphere and Radiowave Propagation, Russian Academy of Sciences, 142190 Troitsk, Moscow region, Russia.

Appendices

Appendices

1.1 Appendix 1: Governing Equations of the 3-D Volume Integral Equation Approach

The 3-D Earth model considered consists of a number of 3-D inhomogeneities of conductivity σ3D(r, ϑ, φ), embedded in 1-D host section of conductivity σ b (r). Complex-valued conductivity σ(σ3D and σ b ) can incorporate the effects of displacement currents or induced polarization. Note, also, that σ3D may account for anisotropy of the electric conductivity and thus it is represented in general by a 3 × 3 matrix. For this problem statement, the EM fields in the frequency domain obey Maxwell’s equations (1). Equations (1) are solved by a modern version of the volume integral equation approach. A brief review of the approach is given below.

First, some “reference” radially-symmetric (1-D) section of conductivity σo(r) is introduced. The electric, E°, and magnetic, H°, fields in the reference medium obey Maxwell’s equations

$$ \nabla \times {\mathbf{H}}^{\text{o}} = \sigma_{\text{o}} {\mathbf{E}}^{\text{o}} + {\mathbf{j}}^{ext} ,\quad \nabla \times {\mathbf{E}}^{\text{o}} = i\omega \mu_{\text{o}} {\mathbf{H}}^{\text{o}} , $$
(A.1.1)

and can be determined via fundamental solutions (dyadic Green’s functions) of Eq. A.1.1, G o ej and G hjo as

$$ {\mathbf{E}}^{\text{o}} = \int\limits_{{V^{ext} }} {G_{\text{o}}^{ej} ({\mathbf{r}},{\mathbf{r}}'){\mathbf{j}}^{ext} ({\mathbf{r}}')dv'} ,\quad {\mathbf{H}}^{\text{o}} = \int\limits_{{V^{ext} }} {G_{\text{o}}^{hj} ({\mathbf{r}},{\mathbf{r}} '){\mathbf{j}}^{ext} ({\mathbf{r}} ')dv'} . $$
(A.1.2)

Here V ext is the volume occupied by j ext, \( {\mathbf{r}} = (r,\vartheta ,\varphi ) , {\mathbf{r}} '= (r',\vartheta ',\varphi ') \). Explicit forms for dyadic Green’s functions G ejo and G hjo are presented in Appendix 2. Introducing “scattered” fields, E s = E − E° and H s = H − H°, and subtracting (A.1.1) from (1), Maxwell’s equations for the scattered fields are obtained

$$ \nabla \times {\mathbf{H}}^{\text{s}} = \sigma_{\text{o}} {\mathbf{E}}^{\text{s}} + {\mathbf{j}}^{q} ,\quad \nabla \times {\mathbf{E}}^{\text{s}} = i\omega \mu_{\text{o}} {\mathbf{H}}^{\text{s}} , $$
(A.1.3)

where

$$ {\mathbf{j}}^{q} = (\sigma - \sigma_{\text{o}} I){\mathbf{E}}^{{\text{s}}} + {\mathbf{j}}^{{\text{s}}} ,\quad {\mathbf{j}}^{\text{s}} = (\sigma - \sigma_{\text{o}} I){\mathbf{E}}^{\text{o}} . $$
(A.1.4)

Here I is identity matrix. E s, in analogy with (A.1.2), can be written, as

$$ {\mathbf{E}}^{\text{s}} = \int\limits_{{V^{mod} }} {G_{\text{o}}^{ej} \left( {{\mathbf{r}},{\mathbf{r}}^{\prime}} \right){\mathbf{j}}^{q} ({\mathbf{r}}^{\prime})dv' = {\mathbf{E}}_{\text{o}} ({\mathbf{r}}) + \int\limits_{{V^{mod} }} {G_{\text{o}}^{ej} ({\mathbf{r'}}, {\mathbf{r}})(\sigma ({\mathbf{r}} ') - \sigma_{\text{o}} ({{r^{\prime}}})I){\mathbf{E}}^{\text{s}} ({\mathbf{r}} ')dv '} } , $$
(A.1.5)

which gives the conventional scattering equation with respect to the unknown field E s, with a free term, \( {\mathbf{E}}_{\text{o}} ({\mathbf{r}}) = \int_{{V^{mod} }} {G_{\text{o}}^{ej} ({\mathbf{r}},{\mathbf{r}} ')(\sigma ({\mathbf{r}} ') - \sigma_{\text{o}} ({\mathbf{r}} ')I){\mathbf{j}}^{\text{s}} ({\mathbf{r}} ')dv'} . \)Here V mod is a region, where σ − σ o I differs from 0. After discretization, equation (A.1.5) can be solved by conjugate gradients (CG) iterations. However, for models with strong scatterers the resulting system of linear equations appears to be poorly conditioned. The remedy is to modify equation (A.1.5) to another integral equation (cf. Singer 1995; Pankratov et al. 1995, 1997)

$$ {\varvec{\chi}}({\mathbf{r}}) - \int\limits_{{V^{mod}}} K ({\mathbf{r}},{\mathbf{r}}')R({\mathbf{r}}'){\varvec{\chi}}({\mathbf{r}}')dv' = {\varvec{\chi}}_{\text{o}} ({\mathbf{r}}), $$
(A.1.6)

where

$$ R = (\sigma - \sigma_{\text{o}} I)(\sigma + \sigma_{\text{o}}^{*} I)^{ - 1} , $$
(A.1.7)
$$ K({\mathbf{r}},{\mathbf{r}}') = \delta ({\mathbf{r}} - {\mathbf{r}}'){{I}} + 2\sqrt {\text{Re} \sigma_{\text{o}} ({\text{r}})} G_{\text{o}}^{ej} ({\mathbf{r}},{\mathbf{r}}')\sqrt {\text{Re} \sigma_{\text{o}} (r')} , $$
(A.1.8)
$$ {\varvec{\chi}}_{\text{o}} = \int\limits_{{V^{mod}}} K ({\mathbf{r}},{\mathbf{r}}')\sqrt {\text{Re} \sigma_{\text{o}} } (\sigma + \sigma_{\text{o}}^{*} {{I}})^{ - 1} {\mathbf{j}}^{{\text{s}}} ({\mathbf{r}}')dv', $$
(A.1.9)

where \( \delta ({\mathbf{r}} - {\mathbf{r}}') \) is Dirac’s delta function, \( \sigma_{\text{o}}^{*} \) and Reσ o are the respective complex conjugate and real part of σ o, and where

$$ {\varvec{\chi}} = \frac{1}{{2\sqrt {\text{Re} \sigma_{\text{o}} } }}((\sigma + \sigma_{\text{o}}^{*} I){\mathbf{E}}^{{\text{s}}} + {\mathbf{j}}^{{\text{s}}} ). $$
(A.1.10)

Note that in order to derive (A.1.6) the term \( (\sigma - \sigma_{\text{o}} ){\mathbf{E}}^{{\text{o}}} /2\text{Re} \sigma_{\text{o}} \) is added to both sides of (A.1.5) and a change of variables is performed. The specific form of equation (A.1.6) is motivated by the energy inequality for the scattered EM field, which expresses a fundamental physical fact that the energy flow of the scattered field outside the domain with inhomogeneities is always non-negative (cf. Singer 1995; Pankratov et al. 1995). The advantage of this form of integral equation is that operator A

$${A}{\varvec{\chi}} = (I - KR){\varvec{\chi}} = {\varvec{\chi}}_{\text{o}},$$
(A.1.11)

is well conditioned irrespective of the conductivity contrast in the model. Indeed it can be shown (cf. Avdeev et al. 2000) that a condition number, \( k(A) = \left\| A \right\| \cdot \left\| {A^{ - 1} } \right\|, \) can be estimated as \( k(A) \simeq \sqrt M , \) where M is the maximum lateral contrast in the model, provided the reference medium is chosen in an “optimal” way (Singer 1995). Specifically, outside the depths occupied by inhomogeneities, the reference medium coincides with the conductivity of the host section, σ b (r), but at depths with a laterally inhomogeneous distribution of conductivity it has a form \( \sigma_{\text{o}} (r) = \sqrt {\mathop {\min }\limits_{\vartheta ,\varphi } \sigma (r,\vartheta ,\varphi )\mathop {\max }\limits_{\vartheta ,\varphi } \sigma (r,\vartheta ,\varphi )} . \) From the estimate for k(A) it follows that even for media with large lateral contrasts of conductivity (say, on land-ocean boundaries), the operator A still remains well conditioned.

Numerical solutions based on this volume integral approach can be represented schematically as a sequence of the following steps:

  1. (1)

    A discretized form of A cf. (A.1.11) is calculated on V mod (cf. (A.1.7) and (A.1.8));

  2. (2)

    js and χo are calculated on Vmod (cf. (A.1.4) and (A.1.9));

  3. (3)

    The scattering equation (A.1.6) is solved on V mod by the CG iterations;

  4. (4)

    Es is calculated on Vmod from (A.1.10), and then jq is calculated from (A.1.4);

  5. (5)

    Es and Hs are calculated at \( {\mathbf{r}} \in \;V^{obs} \) (region of interest) as

$$ {\mathbf{E}}^{{\text{s}}} = \int\limits_{{V^{mod}}} {G_{\text{o}}^{ej} ({\mathbf{r}},{\mathbf{r}}'){\mathbf{j}}^{q} ({\mathbf{r}}')dv'} ,\quad {\mathbf{H}}^{\text{s}} = \int\limits_{{V^{mod}}} {G_{\text{o}}^{hj} ({\mathbf{r}},{\mathbf{r}}'){\mathbf{j}}^{q} ({\mathbf{r}}')dv';} $$
(A.1.12)
  1. (6)

    E° and H° are calculated at \( {\mathbf{r}} \in \;V^{obs} \) from (A.1.2) and finally the total fields are calculated as E = Es + E° and H = Hs + H°;

The cornerstone of the integral equation solution is the derivation and calculation of dyadic Green’s functions, \( G_{\text{o}}^{ej} ({\mathbf{r}},{\mathbf{r}}') \) and \( G_{\text{o}}^{hj} ({\mathbf{r}},{\mathbf{r}}') \)which are discussed below.

1.2 Appendix 2: Explicit Forms of 3 × 3 Dyadic Green’s Functions of Radially-Symmetric Section

In this Appendix the final expressions for the elements of 3 × 3 dyadic Green’s functions of radially-symmetric section, \( G_{\text{o}}^{ej} ({\mathbf{r}},{\mathbf{r}}') \) and \( G_{\text{o}}^{hj} ({\mathbf{r}},{\mathbf{r}}') \) are presented. The details of the derivation can be found in Kuvshinov (2008). These functions express electric and magnetic fields induced in a radially-symmetric section of conductivity \( \sigma_{\text{o}} ({\text{r}}) \) by an impressed current j

$$ {\mathbf{E}}(r,\vartheta ,\varphi ) = \int\limits_{V} {G_{\text{o}}^{ej} (r,r',\vartheta ,\vartheta ',\varphi - \varphi '){\mathbf{j}}(r',\vartheta ',\varphi ')dv'} , $$
(A.2.1)
$$ {\mathbf{H}}(r,\vartheta ,\varphi ) = \int\limits_{V} {G_{\text{o}}^{hj} (r,r',\vartheta ,\vartheta ',\varphi - \varphi '){\mathbf{j}}(r',\vartheta ',\varphi ')dv'} . $$
(A.2.2)

Here V is a 3-D volume occupied by a current j, \( dv^{\prime} = {r^{\prime}}^{2} \sin \vartheta^{\prime} d\vartheta^{\prime} d\varphi^{\prime} dr^{\prime} , \) and G ej(hj) are

$$ G_{\text{o}}^{ej(hj)} = {\mathbf{e}}_{\vartheta } g_{\vartheta \vartheta^{\prime} }^{ej(hj)} {\mathbf{e}}_{\vartheta^{\prime}} + {\mathbf{e}}_{\vartheta } g_{\vartheta \varphi^{\prime}}^{ej(hj)} {\mathbf{e}}_{\varphi^{\prime} } + \cdots + {\mathbf{e}}_{r} g_{rr^{\prime} }^{ej(hj)} {\mathbf{e}}_{r^{\prime} } , $$
(A.2.3)

where \( {\mathbf{e}}_{\vartheta } \), \( {\mathbf{e}}_{\varphi } \) and \( {\mathbf{e}}_{r} \), \( {\mathbf{e}}_{{\vartheta^{\prime}}} \), \( {\mathbf{e}}_{{\varphi^{\prime}}} \) and \( {\mathbf{e}}_{{r^{\prime}}} \) are the unit vectors of spherical system of coordinates at points \( (r,\vartheta ,\varphi ) \) and \( (r',\vartheta ',\varphi ') \) respectively. For example if Eqs. A.1.12 are considered then \( {\mathbf{E}} \equiv {\mathbf{E}}^{{\text{s}}} ,\;\;{\mathbf{H}} \equiv {\mathbf{H}}^{{\text{s}}} ,\;\;{\mathbf{j}} \equiv {\mathbf{j}}^{q} ,\;\;V \equiv V^{\bmod } . \) The expressions for elements \( g_{{\vartheta \vartheta^{\prime}}}^{ej(hj)} ,\,g_{{\vartheta \varphi^{\prime}}}^{ej(hj)} \) … are

$$ g_{\vartheta \vartheta^{\prime} }^{ej} = \frac{1}{\sin \vartheta }\frac{1}{\sin \vartheta^{\prime} }\partial_{\varphi } \partial_{\varphi^{\prime} } P\left[ {\frac{1}{{r^{\prime}r}}\frac{{G^{t} }}{n(n + 1)}} \right] + \partial_{\vartheta } \partial_{\vartheta^{\prime} } P\left[ {\frac{1}{r^{\prime} r}\frac{{G^{p} }}{n(n + 1)}} \right], $$
(A.2.4)
$$ g_{{\vartheta \varphi^{\prime}}}^{ej} = - \frac{1}{\sin \vartheta }\partial_{\varphi } \partial_{\vartheta '} P\left[ {\frac{1}{{r^{\prime}r}}\frac{{G^{t} }}{n(n + 1)}} \right] + \frac{1}{\sin \vartheta '}\partial_{\vartheta } \partial_{\varphi '} P\left[ {\frac{1}{{r^{\prime}r}}\frac{{G^{p} }}{n(n + 1)}} \right], $$
(A.2.5)
$$ g_{\vartheta r^{\prime} }^{ej} = - \partial_{\vartheta } P\left[ {\frac{1}{{r^{\prime 2} r}}\frac{{\beta^{p} G^{p} }}{{\sigma_{\text{o}} (r^{\prime} )}}} \right], $$
(A.2.6)
$$ g_{{\varphi \vartheta^{\prime}}}^{ej} = - \frac{1}{\sin \vartheta^{\prime} }\partial_{\vartheta } \partial_{\varphi^{\prime} } P\left[ {\frac{1}{r^{\prime} r}\frac{{G^{t} }}{n(n + 1)}} \right] + \frac{1}{\sin \vartheta }\partial_{\varphi } \partial_{\vartheta^{\prime} } P\left[ {\frac{1}{r^{\prime} r}\frac{{G^{p} }}{n(n + 1)}} \right], $$
(A.2.7)
$$ g_{\varphi \varphi^{\prime} }^{ej} = \partial_{\vartheta } \partial_{\vartheta^{\prime} } P\left[ {\frac{1}{r^{\prime} r}\frac{{G^{t} }}{n(n + 1)}} \right] + \frac{1}{\sin \vartheta }\frac{1}{\sin \vartheta^{\prime} }\partial_{\varphi } \partial_{\varphi^{\prime} } P\left[ {\frac{1}{r^{\prime} r}\frac{{G^{p} }}{n(n + 1)}} \right], $$
(A.2.8)
$$ g_{\varphi r^{\prime} }^{ej} = - \frac{1}{\sin \vartheta }\partial_{\varphi } P\left[ {\frac{1}{{r^{\prime 2} r}}\frac{{\beta^{p} G^{p} }}{{\sigma_{\text{o}} (r^{\prime} )}}} \right], $$
(A.2.9)
$$ g_{r\vartheta '}^{ej} = \partial_{\vartheta '} P\left[ {\frac{1}{{r^{\prime} r^{2} }}\frac{{\alpha^{p} G^{p} }}{{\sigma_{\text{o}} (r)}}} \right], $$
(A.2.10)
$$g_{r\varphi^{\prime} }^{ej} = \frac{1}{\sin \vartheta^{\prime}}\partial_{\varphi^{\prime} } P\left[{\frac{1}{r^{\prime}r^{2}}}\frac{{\alpha^{p} G^{p}}}{{\sigma_{\text{o}} (r)}} \right], $$
(A.2.11)
$$ g_{rr^{\prime} }^{ej} = - \frac{\delta (r - r^{\prime} )\delta (\vartheta - \vartheta^{\prime} )\delta (\varphi - \varphi^{\prime} )}{{\sin \vartheta^{\prime} r^{\prime 2} \sigma_{\text{o}} (r)}} + P\left[ {\frac{1}{{r^{\prime 2} r^{2} }}\frac{{n(n + 1)\alpha^{p} \beta^{p} G^{p} }}{{\sigma_{\text{o}} (r)\sigma_{\text{o}} (r^{\prime} )}}} \right], $$
(A.2.12)

for electric field, and

$$ g_{\vartheta \vartheta '}^{hj} = - \frac{1}{\sin \vartheta '}\partial_{\vartheta } \partial_{\varphi '} P\left[ {\frac{1}{r'r}\frac{{\alpha^{t} G^{t} }}{n(n + 1)}} \right] - \frac{1}{\sin \vartheta }\partial_{\varphi } \partial_{\vartheta '} P\left[ {\frac{1}{r'r}\frac{{\alpha^{p} G^{p} }}{n(n + 1)}} \right], $$
(A.2.13)
$$ g_{{\vartheta \varphi^{\prime}}}^{hj} = - \frac{1}{\sin \vartheta }\frac{1}{\sin \vartheta '}\partial_{\varphi } \partial_{\varphi '} P\left[ {\frac{1}{{r^{\prime}r}}\frac{{\alpha^{t} G^{t} }}{n(n + 1)}} \right] + \partial_{\vartheta } \partial_{\vartheta '} P\left[ {\frac{1}{{r^{\prime}r}}\frac{{\alpha^{p} G^{p} }}{n(n + 1)}} \right], $$
(A.2.14)
$$ g_{\vartheta r^{\prime} }^{hj} = \frac{1}{\sin \vartheta }\partial_{\varphi } P\left[ {\frac{1}{{r^{\prime 2} r}}\frac{{\alpha^{p} \beta^{p} G^{p} }}{{\sigma_{\text{o}} (r^{\prime} )}}} \right], $$
(A.2.15)
$$ g_{\varphi \vartheta^{\prime} }^{hj} = \partial_{\vartheta } \partial_{\vartheta^{\prime} } P\left[ {\frac{1}{r^{\prime} r}\frac{{\alpha^{t} G^{t} }}{n(n + 1)}} \right] - \frac{1}{\sin \vartheta^{\prime} }\partial_{\vartheta } \partial_{\varphi^{\prime} } P\left[ {\frac{1}{r^{\prime} r}\frac{{\alpha^{p} G^{p} }}{n(n + 1)}} \right], $$
(A.2.16)
$$ g_{{\varphi \varphi^{\prime}}}^{hj} = \frac{1}{\sin \vartheta }\partial_{\varphi } \partial_{\vartheta '} P\left[ {\frac{1}{{r^{\prime}r}}\frac{{\alpha^{t} G^{t} }}{n(n + 1)}} \right] + \frac{1}{\sin \vartheta '}\partial_{\vartheta } \partial_{\varphi '} P\left[ {\frac{1}{{r^{\prime}r}}\frac{{\alpha^{p} G^{p} }}{n(n + 1)}} \right], $$
(A.2.17)
$$ g_{\varphi r^{\prime} }^{hj} = - \partial_{\vartheta } P\left[ {\frac{1}{{{r^{\prime}}^{2} r}}\frac{{\alpha^{p} \beta^{p} G^{p} }}{{\sigma_{\text{o}} (r^{\prime} )}}} \right], $$
(A.2.18)
$$ g_{r\vartheta \prime }^{hj} = \frac{1}{\sin \vartheta^\prime }\partial_{\varphi^\prime } P\left[ {\frac{1}{{r^{\prime}r^{2} }}\frac{{G^{t} }}{{i\omega \mu_{\text{o}} }}} \right], $$
(A.2.19)
$$ g_{r\varphi^{\prime} }^{hj} = - \partial_{\vartheta^{\prime} } P\left[ {\frac{1}{{r^{\prime} r^{2} }}\frac{{G^{t} }}{{i\omega \mu_{\text{o}} }}} \right], $$
(A.2.20)
$$ g_{rr^{\prime} }^{hj} = 0 $$
(A.2.21)

for magnetic field. Here P[f] stands for the summation of the series

$$ P[f](\cos \gamma ,r,r^{\prime} ) = \sum\limits_{n = 0}^{\infty } {\frac{2n + 1}{4\pi }f(n,r,r^{\prime} )P_{n} } (\cos \gamma ), $$
(A.2.22)

where \( \cos \gamma = \cos \vartheta \cos \vartheta^{\prime} + \sin \vartheta \sin \vartheta^{\prime} \cos (\varphi - \varphi^{\prime} ), \) and P n are Legendre polynomials. Scalar Green’s functions \( G^{t(p)} (n,r,r^{\prime} ) \) are given as continuous solutions of equation

$$ \partial_{r} \left( {\frac{1}{{p^{t(p)} (r)}}\partial_{r} G^{t(p)} (n,r,r^{\prime} )} \right) = q^{t(p)} (r)G^{t(p)} (n,r,r^{\prime} ) + \delta (r - r^{\prime} ), $$
(A.2.23)

with the boundary conditions \( G^{t(p)} (n,r,r^{\prime} ) \to 0 \) when → 0 and → ∞. The coefficients p t(p)(r) and q t(p)(r) are determined either as

$$ p^{t} (r) = - i\omega \mu_{\text{o}} ,\quad q^{t} (r) = - \frac{{\kappa^{2} }}{{i\omega \mu_{\text{o}} }}, $$
(A.2.24)

for the toroidal mode, or

$$ p^{p} (r) = \frac{{\kappa^{2} }}{{\sigma_{\text{o}} (r)}},\quad q^{p} (r) = \sigma_{\text{o}} (r), $$
(A.2.25)

for the poloidal mode. Here \( \kappa^{2} = n(n + 1)/r^{2} - i\omega \mu_{\text{o}} \sigma_{\text{o}} (r). \) The final result for \( G^{t(p)} (n,r,r') \) is given as

$$ G^{t(p)} (n,r,r') = - \;\frac{1}{{Y^{l,t(p)} (n,r') + Y^{u,t(p)} (n,r')}}{\text{e}}^{{\int\limits_{{r^{\prime}}}^{r} {p^{t(p)} (n,\xi )\alpha^{t(p)} (n,\xi ,r')d\xi } }} , $$
(A.2.26)

where the function \( \alpha^{t(p)} (n,\xi ,r^{\prime}) \) is

$$ \alpha^{t(p)} (n,\xi ,r^{\prime} ) = \left\{ \begin{array}{ll} - Y^{u,t(p)} (n,\xi ),& \xi > r^{\prime} \hfill \\ Y^{l,t(p)} (n,\xi ),& \xi < r^{\prime} \hfill \\ \end{array} \right.. $$
(A.2.27)

Note that the functions βt(p) in Eqs. A.2.6, A.2.9, A.2.12, A.2.15 and A.2.18 are defined via αt(p) as \( \beta^{t(p)} (n,r,r^{\prime}) = \alpha^{t(p)} (n,r^{\prime} ,r) \).

It is seen from Eqs. A.2.26A.2.27 that calculation of \( G^{t(p)} (n,r,r^{\prime} ) \) for arbitrary r and \( r^{\prime} \) requires calculation of admittances \( Y^{l,t(p)} (r^{\prime} ) \) and \( Y^{u,t(p)} (r^{\prime}) \), and calculations of exponentials, which in its turn contain Y l,t(p) and Y u,t(p). In order to calculate these functions radially-symmetric sections are introduced that consist of N layers \( \{ r_{k + 1} < r \le r_{k} \}_{k = 1,2, \ldots ,N} , \) where within each layer the conductivity varies as \( \sigma_{\text{o}} (r) = \sigma_{k} \left( {\frac{{r_{k} }}{r}} \right)^{2} \) (e.g. Fainberg et al. 1990). Then the recurrences for calculating \( Y^{p,l} (r_{k} ), \) \( Y^{p,u} (r_{k} ), \) \( Y^{t,l} (r_{k} ) \) and Y t,u(r k ) for arbitrary r k are

$$ Y_{k}^{l,p} \equiv Y^{l,p} (r_{k} ) = g_{k} \frac{{Y_{k + 1}^{l,p} (b_{k} - 0.5\tau_{k} ) - g_{k} \eta_{k} \tau_{k} }}{{g_{k} \eta_{k} (b_{k} + 0.5\tau_{k} ) - b_{k}^{ + } b_{k}^{ - } \tau_{k} Y_{k + 1}^{l,p} }},\quad k = N - 1,\; \ldots ,2,\;1,\,Y_{N}^{l,p} = \frac{{\sigma_{N} r_{N} }}{{b_{N}^{ - } }}, $$
(A.2.28)
$$ Y_{k + 1}^{u,p} = g_{k} \eta_{k} \frac{{Y_{k}^{u,p} (b_{k} + 0.5\tau_{k} ) - g_{k} \tau_{k} }}{{g_{k} (b_{k} - 0.5\tau_{k} ) - b_{k}^{ + } b_{k}^{ - } \tau_{k} Y_{k}^{u,p} }},\quad k = 1,\;2, \ldots ,N - 1,\quad Y_{1}^{u,p} = \frac{{\sigma_{1} r_{1} }}{{b_{1}^{ + } }}, $$
(A.2.29)
$$ Y_{k}^{l,t} = \frac{1}{{q_{k} }}\frac{{q_{k + 1} Y_{k + 1}^{l,t} (b_{k} - 0.5\tau_{k} ) + b_{k}^{ + } b_{k}^{ - } \tau_{k} }}{{(b_{k} + 0.5\tau_{k} ) + q_{k + 1} \tau_{k} Y_{k + 1}^{l,t} }},\;\;k = N - 1,\; \ldots ,2, 1,\quad Y_{N}^{l,t} = - \frac{{b_{N}^{ + } }}{{q_{N} }}, $$
(A.2.30)
$$ Y_{k + 1}^{u,t} = \frac{1}{{q_{k + 1} }}\frac{{q_{k} Y_{k}^{u,t} (b_{k} + 0.5\tau_{k} ) + b_{k}^{ + } b_{k}^{ - } \tau_{k} }}{{(b_{k} - 0.5\tau_{k} ) + q_{k} \tau_{k} Y_{k}^{u,t} }},\quad k = 1,\;2, \ldots ,N - 1,\quad Y_{1}^{u,t} = - \frac{{b_{1}^{ - } }}{{q_{1} }}, $$
(A.2.31)

where \( q_{k} = i\omega \mu_{\text{o}} r_{k} \), \( b_{k}^{ - } = b_{k} - \frac{1}{2},\quad b_{k}^{ + } = b_{k} + \frac{1}{2},\quad b_{k} = \{ (n + \frac{1}{2})^{2} - i\omega \mu_{0} \sigma_{k} r_{k}^{2} \}^{{\frac{1}{2}}} \), \( \eta_{k} = \frac{{r_{k} }}{{r_{k + 1} }} \), \( \tau_{k} = \frac{{1 - \varsigma_{k} }}{{1 + \varsigma_{k} }} \), \( \varsigma_{k} = \eta_{k}^{{2b_{k} }} \) and \( g_{k} = \sigma_{k} r_{k} \). Finally G t(p)(n,r i, r j ) for r i  < r j can be written as

$$ G^{t} (n,r_{i} ,r_{j} ) = - \frac{1}{{Y_{j}^{t,\;l} + Y_{j}^{t,\;u} }}\prod\limits_{k = j}^{i} {F_{k}^{t} } ,\quad r_{i} \le r_{j} ,\,F_{k}^{t} = \frac{1}{{1 + \zeta_{k} }}\frac{{2b_{k} \eta_{k}^{{b_{k}^{ - } }} }}{{(b_{k} + 0.5\tau_{k} ) + q_{k} \tau_{k} Y_{k + 1}^{l,t} }}, $$
(A.2.32)
$$ G^{p} (n,r_{i} ,r_{j} ) = - \frac{1}{{Y_{j}^{p,\;l} + Y_{j}^{p,\;u} }}\prod\limits_{k = j}^{i} {F_{k}^{p} } ,\;r_{i} \le r_{j} ,\,F_{k}^{p} = \frac{1}{{1 + \zeta_{k} }}\frac{{2g_{k} b_{k} \eta_{k}^{{b_{k}^{ - } }} }}{{g_{k} \eta_{k} (b_{k} + 0.5\tau_{k} ) - b_{k}^{ + } b_{k}^{ - } \tau_{k} Y_{k + 1}^{l,p} }}. $$
(A.2.33)

Note that, due to the symmetry of scalar Green’s functions, \( G^{t(p)} (n,r,r^{\prime}) = G^{t(p)} (n,r^{\prime},r) \), one can readily obtain the results for r i  r j . Finally, it is relevant to mention that C-responses, C n , at the Earth’s surface are connected to \( Y_{1}^{l,t} \) as

$$ C_{n} = - 1/i\omega \mu_{\text{o}} Y_{1}^{l,t} , $$
(A.2.34)

whereas Q n are connected with \( Y_{1}^{l,t} \) as

$$ Q_{n} = \frac{n}{n + 1}\frac{{i\omega \mu_{\text{o}} a\,Y_{1}^{l,t} + n + 1}}{{i\omega \mu_{\text{o}} a\,Y_{1}^{l,t} - n}}. $$
(A.2.35)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuvshinov, A.V. 3-D Global Induction in the Oceans and Solid Earth: Recent Progress in Modeling Magnetic and Electric Fields from Sources of Magnetospheric, Ionospheric and Oceanic Origin. Surv Geophys 29, 139–186 (2008). https://doi.org/10.1007/s10712-008-9045-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-008-9045-z

Keywords

Navigation