Skip to main content
Log in

Smooth Projective Planes

  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

Using symplectic topology and the Radon transform, we prove that smooth 4-dimensional projective planes are diffeomorphic to \(\mathbb{CP}^{2}\). We define the notion of a plane curve in a smooth projective plane, show that plane curves in high dimensional regular planes are lines, prove that homeomorphisms preserving plane curves are smooth collineations, and prove a variety of results analogous to the theory of classical projective planes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Albert A.A. (1942). Non-associative algebras. I. Fundamental concepts and isotopy. Ann. Math (2). 43: 685–707MR MR0007747 (4,186a)

    Article  MathSciNet  Google Scholar 

  2. Arnol’d, V. I.: Geometrical Methods in the Theory of Ordinary Differential Equations, 2nd edn., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Vol. 250, Springer-Verlag, New York, 1988, Translated from the Russian by Joseph Szücs [József M. Szücs]. MR MR947141 (89h: 58049)

  3. Barraud J.-F. (2000). Courbes pseudo-holomorphes équisingulières en dimension 4. Bull. Soc. Math. France 128(2):179–206 MR MR1772440 (2001i:53154)

    MathSciNet  Google Scholar 

  4. Behrend F. (1939). über Systeme reeller algebraischer Gleichungen, Compositio Math. 7 (1939), 1–19. MR MR0000226 (1,36e)

    MATH  MathSciNet  Google Scholar 

  5. Bers, L.: Functional-Theoretical Properties of Solutions of Partial Differential Equations of Elliptic Type, Contributions to the Theory of Partial Differential Equations, Annals of Mathematics Studies, no. 33, Princeton University Press, Princeton, N. J., 1954, pp. 69–94. MR0070009 (16,1114a)

  6. Bödi R. Smooth Stable and Projective Planes, Ph.D. thesis, Universität Tübingen, 1996

  7. Bödi, R.: Smooth stable planes, Results Math. 31 (3–4) (1997), 300–321. MR MR1447427 (98e: 51021)

    MATH  MathSciNet  Google Scholar 

  8. Bödi, R. and Immervoll, S.: Implicit characterizations of smooth incidence geometries, Geom. Dedicata 83 (1–3) (2000), 63–76, Special issue dedicated to Helmut R. Salzmann on the occasion of his 70th birthday. MR MR1800011 (2001j: 51018)

    Article  MATH  MathSciNet  Google Scholar 

  9. Bödi, R. and Kramer, L.: Differentiability of continuous homomorphisms between smooth loops, Results Math. 25 (1–2) (1994), 13–19. MR MR1262081 (95b: 20100)

    MATH  MathSciNet  Google Scholar 

  10. Breitsprecher, S.: Projektive Ebenen, die Mannigfaltigkeiten sind, Math. Z. 121 (1971), 157–174. MR MR0281216 (43 #6935)

    Article  MATH  MathSciNet  Google Scholar 

  11. Bryant, R. L., Chern, S. S., Gardner, R. B., Goldschmidt, H. L. and Griffiths, P. A.: Exterior Differential Systems, Springer-Verlag, New York, 1991. MR 92h: 58007

    Google Scholar 

  12. Bryant, R., Griffiths, P. and Hsu, L.: Toward a Geometry of Differential Equations, Geometry, Topology, & Physics, Conf. Proc. Lecture Notes Geom. Topology, IV, Internat. Press, Cambridge, MA, 1995, pp. 1–76. MR MR1358612 (97b: 58005)

  13. Cartan, é.: Sur les variétés connexion projective, Bull. Soc. Math. France 52 (1924), 205–241, Also in [16], part. III, Vol. 1, pp. 825–861

    MathSciNet  Google Scholar 

  14. Cartan, é.: Le principe de dualité et la théorie des groupes simples et semi-simples, Bull. Sci. Math. 49 (1925), 361–374

    Google Scholar 

  15. Cartan, é.: Les espaces connexion projective, Mém. Sémin. Anal. vectorielle 4 (1937), 147–159, Also in [16], part. III, Vol. 2, pp. 1397–1409

    Google Scholar 

  16. Cartan É. CEuvres complétes, Gauthier-Villars, Paris, pp. 1952–1955

  17. Duistermaat, J. J.: On first order elliptic equations for sections of complex line bundles, Compositio Math. 25 (1972), 237–243. MR MR0367476 (51 #3718)

    MATH  MathSciNet  Google Scholar 

  18. Duval, J.: Un theoreme de Green presque complexe, math/0311299, 1999

  19. Freudenthal, H.: Kompakte projektive Ebenen, Illinois J. Math. 1 (1957), 9–13. MR0084786 (18,921c)

    MATH  MathSciNet  Google Scholar 

  20. Gluck, H. and Warner, F. W.: Great circle fibrations of the three-sphere, Duke Math. J. 50 (1) (1983), 107–132. MR MR700132 (84g: 53056)

    Article  MATH  MathSciNet  Google Scholar 

  21. Griffiths, P. and Harris, J.: A Poncelet theorem in space, Comment. Math. Helv. 52 (2) (1977), 145–160. MR MR0498606 (58 #16695)

    Article  MATH  MathSciNet  Google Scholar 

  22. Griffiths, P. and Harris, J. On Cayley’s explicit solution to Poncelet’s porism, Enseign. Math. (2) 24 (1–2) (1978), 31–40. MR MR497281 (80g: 51017)

    MATH  MathSciNet  Google Scholar 

  23. Gromov, M.: Pseudoholomorphic curves in symplectic manifolds, Invent. Math. 82 (2) (1985), 307–347. MR MR809718 (87j: 53053)

    Article  MATH  MathSciNet  Google Scholar 

  24. Gromov, M. and Shubin, M. A.: The Riemann–Roch theorem for general elliptic operators, C. R. Acad. Sci. Paris Sér. I Math. 314 (5) (1992), 363–367. MR MR1153716 (93b: 58138)

    MATH  MathSciNet  Google Scholar 

  25. Gromov M., Shubin M.A. The Riemann–Roch Theorem for Elliptic Operators, I. M. Gel’fand Seminar, Adv. Soviet Math ., Vol. 16, Amer. Math. Soc., Providence, RI, 1993, pp. 211–241. MR MR1237831 (94j: 58163)

  26. Gromov, M. and Shubin, M. A.: The Riemann–Roch theorem for elliptic operators and solvability of elliptic equations with additional conditions on compact subsets, Invent. Math. 117 (1) (1994), 165–180. MR MR1269429 (95d: 58121)

    Article  MATH  MathSciNet  Google Scholar 

  27. Hopf, H.: Ein topologischer Beitrag zur reellen Algebra, Comment. Math. Helv. 13 (1941), 219–239. MR0004785 (3,61c)

    Article  MATH  MathSciNet  Google Scholar 

  28. Ivashkovich, S. and Shevchishin, V.: Structure of the moduli space in a neighborhood of a cuspcurve and meromorphic hulls, Invent. Math. 136 (3) (1999), 571–602. MR MR1695206 (2001d: 32035)

    Article  MATH  MathSciNet  Google Scholar 

  29. Kramer, L.: The topology of smooth projective planes, Arch. Math. (Basel) 63 (1) (1994), 85–91. MR MR1277915 (95k: 51021)

    MATH  MathSciNet  Google Scholar 

  30. Kramer L., Stolz S.: A diffeomorphism classification of manifolds which are like projective planes, math.GT/0505621, 2004

  31. Kulikov, Vik. S. and Kharlamov, V. M.: On braid monodromy factorizations, Izv. Ross. Akad. Nauk Ser. Mat. 67 (3) (2003), 79–118. MR MR1992194 (2004i: 14015)

    MathSciNet  Google Scholar 

  32. Lalonde, F. and McDuff, D.: J-Curves and the Classification of Rational and Ruled Symplectic 4-Manifolds, Contact and Symplectic Geometry (Cambridge, 1994), Publ. Newton Inst., Vol. 8, Cambridge Univ. Press, Cambridge, 1996, pp. 3–42. MR MR1432456 (98d: 57045)

  33. Lebrun, C. and Mason, L. J.: Zoll manifolds and complex surfaces, J. Differ. Geom. 61 (3) (2002), 453–535. MR MR1979367 (2004d: 53043)

    MATH  MathSciNet  Google Scholar 

  34. Löwen, R.: Ends of surface geometries, revisited, Geom. Dedicata 58 (2) (1995), 175–183. MR MR1358231 (98c: 51018)

    Article  MATH  MathSciNet  Google Scholar 

  35. McKay, B.: Cartan’s method of equivalence, unpublished

  36. McKay, B.: Dual curves and pseudoholomorphic curves, Selecta Math. (N.S.) 9 (2) (2003), 251–311. MR 1 993 485

    MATH  MathSciNet  Google Scholar 

  37. McKay, B.: Almost complex rigidity of \(\mathbb{CP}^{2}\), math.SG/0403155, 2004

  38. Micallef, M. J. and White, B.: The structure of branch points in minimal surfaces and in pseudoholomorphic curves, Ann. Math. (2) 141 (1) (1995), 35–85. MR MR1314031 (96a: 58063)

    Article  MATH  MathSciNet  Google Scholar 

  39. Otte, J.: Differenzierbare Ebenen, Ph.D. thesis, Kiel, 1992

  40. Salzmann, H.: Geometries on surfaces, Pacific J. Math. 29 (1969), 397–402. MR0248855 (40 #2105)

    MATH  MathSciNet  Google Scholar 

  41. Salzmann, H., Betten, D., Grundhöfer, T., Hähl, H., Löwen, R. and Stroppel, M.: Compact Projective Planes, de Gruyter Expositions in Mathematics, Vol. 21, Walter de Gruyter & Co., Berlin, 1995, With an introduction to octonion geometry. MR MR1384300 (97b: 51009)

  42. Salzmann H.R. (1967). Topological planes. Adv. in Math. 2 (fase. 1) (1967), 1–60 (1967). MR MR0220135 (36 #3201)

  43. Schwartz, R. E.: The Poncelet grid, unpublished, December 2001

  44. Sikorav, J.-C.: Dual elliptic planes, Actes des journés mathématique à la mémoire de Jean Leray, Soc. Math. France, Séminaires et congrès, Vol. 9, 2005, math.SG/0008234, pp. 185-207

  45. Springer, T. A.: An algebraic proof of a theorem of H. Hopf, Nederl. Akad. Wetensch. Proc. Ser. A. 57 = Indagationes Math. 16 (1954), 33–35. MR0060494 (15,678a)

    MathSciNet  Google Scholar 

  46. Tresse, A.: Détermination des invariants ponctuels de l’équation différentielle ordinaire du second ordre y′′=ω(x, y, y′), Ph.D. thesis, Universtät Leipzig, Leipzig, 1896, Presented to the Prince Jablonowski Society of Leipzig; unpublished

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Mckay.

Additional information

*Thanks to Robert Bryant and John Franks.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mckay, B. Smooth Projective Planes. Geom Dedicata 116, 157–202 (2005). https://doi.org/10.1007/s10711-005-9012-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-005-9012-5

Keywords

Navigation