Skip to main content
Log in

Cross-species amplification of microsatellites reveals incongruence in the molecular variation and taxonomic limits of the Pilosocereus aurisetus group (Cactaceae)

  • Published:
Genetica Aims and scope Submit manuscript

An Erratum to this article was published on 15 June 2013

Abstract

The Pilosocereus aurisetus group contains eight cactus species restricted to xeric habitats in eastern and central Brazil that have an archipelago-like distribution. In this study, 5–11 microsatellite markers previously designed for Pilosocereus machrisii were evaluated for cross-amplification and polymorphisms in ten populations from six species of the P. aurisetus group. The genotypic information was subsequently used to investigate the genetic relationships between the individuals, populations, and species analyzed. Only the Pmac101 locus failed to amplify in all of the six analyzed species, resulting in an 88 % success rate. The number of alleles per polymorphic locus ranged from 2 to 12, and the most successfully amplified loci showed at least one population with a larger number of alleles than were reported in the source species. The population relationships revealed clear genetic clustering in a neighbor-joining tree that was partially incongruent with the taxonomic limits between the P. aurisetus and P. machrisii species, a fact which parallels the problematic taxonomy of the P. aurisetus group. A Bayesian clustering analysis of the individual genotypes confirmed the observed taxonomic incongruence. These microsatellite markers provide a valuable resource for facilitating large-scale genetic studies on population structures, systematics and evolutionary history in this group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

References

  • Arakaki M, Soltis DE, Soltis PS, Speranza PR (2010) Characterization of polymorphic microsatellite loci in Haageocereus (Trichocereeae, Cactaceae). Am J Bot 97:e17–e19

    Article  PubMed  CAS  Google Scholar 

  • Barbará T, Palma-Silva C, Paggi GM, Bered F, Fay MF, Lexer C (2007) Cross-species transfer of nuclear microsatellite markers: potential and limitations. Mol Ecol 16:3759–3767

    Article  PubMed  Google Scholar 

  • Braun PJ, Esteves Pereira E (1986) A new species of Cactaceae from Maranhão, Brazil, Pilosocereus pusillibaccatus Braun et Esteves. Cactus Succ J 58:240–247

    Google Scholar 

  • Butterworth CA (2011) Isolation and characterization of 10 polymorphic microsatellite loci in Coryphantha robustispina ssp. robustispina. Conserv Genet Resour 3:247–249

    Article  Google Scholar 

  • Cavalli-Sforza LL, Edwards AWF (1967) Phylogenetic analysis: models and estimation procedures. Am J Hum Genet 19:233–257

    PubMed  CAS  Google Scholar 

  • Chapuis M-P, Estoup A (2007) Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol 24:621–631

    Article  PubMed  CAS  Google Scholar 

  • Ellegren H, Primmer C, Sheldon BC (1995) Microsatellite ‘evolution’: directionality or bias. Nat Genet 11:360–362

    Article  PubMed  CAS  Google Scholar 

  • Estoup A, Jarne P, Cornuet JM (2002) Homoplasy and mutation model at microsatellite loci and their consequences for population genetics analysis. Mol Ecol 11:1591–1604

    Article  PubMed  CAS  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  PubMed  CAS  Google Scholar 

  • Fiaschi P, Pirani JR (2009) Review of plant biogeographic studies in Brazil. J Syst Evol 47:477–496

    Article  Google Scholar 

  • Gibson AC, Nobel PS (1986) The cactus primer. Harvard University Press, Cambridge

    Google Scholar 

  • Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6:65–70

    Google Scholar 

  • Hughes SL, Rodriguez VM, Hardesty BD, Bárcenas Luna RT, Hernández HM, Robson RM, Hawkins JA (2008) Characterization of microsatellite loci for the critically endangered cactus Ariocarpus bravoanus. Mol Ecol Resour 8:1068–1070

    Article  PubMed  CAS  Google Scholar 

  • Hunt D, Taylor NP, Charles G (2006) The new cactus lexicon. Atlas & Text. dh Books, Milborne Port

    Google Scholar 

  • Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806

    Article  PubMed  CAS  Google Scholar 

  • Kalia RK, Rai MK, Kalia S, Singh R, Dhawan AK (2011) Microsatellite markers: an overview of the recent progress in plants. Euphytica 177:309–334

    Article  CAS  Google Scholar 

  • Langella O (1999) POPULATIONS 1.2.30: Population genetic software version 1.2.30. http://bioinformatics.org/~tryphon/populations/. Accessed 10 January 2012

  • Moraes EM, Abreu AG, Andrade SCS, Sene FM, Solferini VN (2005) Population genetic structure of two columnar cacti with a patchy distribution in eastern Brazil. Genetica 125:311–323

    Article  PubMed  Google Scholar 

  • Moraes EM, Yotoko KSC, Manfrin MH, Solferini VN, Sene FM (2009) Phylogeography of the cactophilic species Drosophila gouveai: demographic events and divergence timing in dry vegetation enclaves in eastern Brazil. J Biogeogr 36:2136–2147

    Article  Google Scholar 

  • Perez MF, Téo MF, Zappi DC, Taylor NP, Moraes EM (2011) Isolation, characterization and cross-species amplification of novel microsatellite markers for Pilosocereus machrisii (Cactaceae). Am J Bot 98:e204–e206

    Article  PubMed  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  Google Scholar 

  • Rambaut A (2009) FigTree software version 1.3.1. http://tree.bio.ed.ac.uk/software/figtree/. Accessed 10 January 2012

  • Rousset F (2008) GENEPOP’ 007: a complete re-implementation of the GENEPOP software for Windows and Linux. Mol Ecol Resour 8:103–106

    Article  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Schaal BA, Hayworth DA, Olsen KM, Rauscher JT, Smith WA (1998) Phylogeographic studies in plants: problems and prospects. Mol Ecol 7:465–474

    Article  Google Scholar 

  • Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol 18:233–234

    Google Scholar 

  • Shaw J, Lickey EB, Schilling EE, Small RL (2007) Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III. Am J Bot 94:275–288

    Article  PubMed  CAS  Google Scholar 

  • Solórzano S, Cortés-Palomec AC, Ibarra A, Dávila P, Oyama K (2009) Isolation, characterization and cross-amplification of polymorphic microsatellite loci in the threatened endemic Mammillaria crucigera (Cactaceae). Mol Ecol Resour 9:156–158

    Article  PubMed  Google Scholar 

  • Takezaki N, Nei M (1996) Genetic distances and reconstruction of phylogenetic trees from microsatellite DNA. Genetics 144:389–399

    PubMed  CAS  Google Scholar 

  • Taylor NP, Zappi DC (2004) Cacti of Eastern Brazil. Royal Botanic Gardens, Kew

    Google Scholar 

  • Van Oosterhout CV, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  Google Scholar 

  • Werneck FP, Costa GC, Colli GR, Prado DE, Sites JW Jr (2011) Revisiting the historical distribution of Seasonally Dry Tropical Forests: new insights based on palaeodistribution modelling and palynological evidence. Global Ecol Biogeogr 20:272–288

    Article  Google Scholar 

  • Zappi DC (1994) Pilosocereus (Cactaceae). The genus in Brazil. Royal Botanic Gardens, Kew

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Heidi Utsunomiya, Fabricia Madia, and Isabel Bonatelli for laboratory assistance and two anonymous reviewers for helpful comments on the manuscript. This work was supported through grants from the Fundação de Amparo à Pesquisa do Estado de São Paulo—FAPESP (05/55200-8 to E.M.M., 08/08421-7 to M.F.P. and 10/05690-7 to M.F.T.) and the Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq (471963/2007-0 and 500903/2009-3 to E.M.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evandro M. Moraes.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 302 kb)

Supplementary material 2 (DOC 37 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moraes, E.M., Perez, M.F., Téo, M.F. et al. Cross-species amplification of microsatellites reveals incongruence in the molecular variation and taxonomic limits of the Pilosocereus aurisetus group (Cactaceae). Genetica 140, 277–285 (2012). https://doi.org/10.1007/s10709-012-9678-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-012-9678-1

Keywords

Navigation