Skip to main content

Advertisement

Log in

A transposon toolkit for gene transfer and mutagenesis in protozoan parasites

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Protozoan parasites affect millions of people around the world. Treatment and control of these diseases are complicated partly due to the intricate biology of these organisms. The interactions of species of Plasmodium, Leishmania and trypanosomes with their hosts are mediated by an unusual control of gene expression that is not fully understood. The availability of the genome sequence of these protozoa sets the stage for using more comprehensive, genome-wide strategies to study gene function. Transposons are effective tools for the systematic introduction of genetic alterations and different transposition systems have been adapted to study gene function in these human pathogens. A mariner transposon toolkit for use in vivo or in vitro in Leishmania parasites has been developed and can be used in a variety of applications. These modified mariner elements not only permit the inactivation of genes, but also mediate the rescue of translational gene fusions, bringing a major contribution to the investigation of Leishmania gene function. The piggyBac and Tn5 transposons have also been shown to mobilize across Plasmodium spp. genomes circumventing the current limitations in the genetic manipulation of these organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adelman ZN, Jasinskiene N, James AA (2002) Development and applications of transgenesis in the yellow fever mosquito, Aedes aegypti. Mol Biochem Parasitol 121:1–10

    Article  CAS  PubMed  Google Scholar 

  • Akopyants NS, Matlib RS, Bukanova EN, Smeds MR, Brownstein BH, Stormo GD, Beverley SM (2004) Expression profiling using random genomic DNA microarrays identifies differentially expressed genes associated with three major developmental stages of the protozoan parasite Leishmania major. Mol Biochem Parasitol 136:71–86

    Article  CAS  PubMed  Google Scholar 

  • Almeida R, Gilmartin BJ, McCann SH, Norrish A, Ivens AC, Lawson D, Levick MP, Smith DF, Dyall SD, Vetrie D et al (2004) Expression profiling of the Leishmania life cycle: cDNA arrays identify developmentally regulated genes present but not annotated in the genome. Mol Biochem Parasitol 136:87–100

    Article  CAS  PubMed  Google Scholar 

  • Arensburger P, Kim YJ, Orsetti J, Aluvihare C, O’Brochta DA, Atkinson PW (2005) An active transposable element, Herves, from the African malaria mosquito Anopheles gambiae. Genetics 169:697–708

    Article  CAS  PubMed  Google Scholar 

  • Auge-Gouillou C, Hamelin MH, Demattei MV, Periquet G, Bigot Y (2001a) The ITR binding domain of the Mariner Mos-1 transposase. Mol Genet Genomics 265:58–65

    Article  CAS  PubMed  Google Scholar 

  • Auge-Gouillou C, Hamelin MH, Demattei MV, Periquet M, Bigot Y (2001b) The wild-type conformation of the Mos-1 inverted terminal repeats is suboptimal for transposition in bacteria. Mol Genet Genomics 265:51–57

    Article  CAS  PubMed  Google Scholar 

  • Augusto MJ, Squina FM, Marchini JF, Dias FC, Tosi LR (2004) Specificity of modified Drosophila mariner transposons in the identification of Leishmania genes. Exp Parasitol 108:109–113

    Article  CAS  PubMed  Google Scholar 

  • Balaji S, Babu MM, Iyer LM, Aravind L (2005) Discovery of the principal specific transcription factors of apicomplexa and their implication for the evolution of the AP2-integrase DNA binding domains. Nucleic Acids Res 33:3994–4006

    Article  CAS  PubMed  Google Scholar 

  • Balciunas D, Wangensteen KJ, Wilber A, Bell J, Geurts A, Sivasubbu S, Wang X, Hackett PB, Largaespada DA, McIvor RS et al (2006) Harnessing a high cargo-capacity transposon for genetic applications in vertebrates. PLoS Genet 2:e169

    Article  PubMed  Google Scholar 

  • Balu B, Adams JH (2006) Functional genomics of Plasmodium falciparum through transposon-mediated mutagenesis. Cell Microbiol 8:1529–1536

    Article  CAS  PubMed  Google Scholar 

  • Balu B, Shoue DA, Fraser MJ Jr, Adams JH (2005) High-efficiency transformation of Plasmodium falciparum by the lepidopteran transposable element piggyBac. Proc Natl Acad Sci USA 102:16391–16396

    Article  CAS  PubMed  Google Scholar 

  • Berriman M, Ghedin E, Hertz-Fowler C, Blandin G, Renauld H, Bartholomeu DC, Lennard NJ, Caler E, Hamlin NE, Haas B et al (2005) The genome of the African trypanosome Trypanosoma brucei. Science 309:416–422

    Article  CAS  PubMed  Google Scholar 

  • Beverley SM (2003a) Trypanosomatid protozoan parasite genetics comes of age: Protozomics!. Nat Rev Genet 4:11–19

    Article  CAS  PubMed  Google Scholar 

  • Beverley SM (2003b) Genetic and genomic approaches to the analysis of Leishmania virulence. In: Marr J, Nilsen T, Komuniecki R (eds) Molecular and medical parasitology. Academic Press, New York, pp 111–122

    Chapter  Google Scholar 

  • Beverley SM, Akopyants NS, Goyard S, Matlib RS, Gordon JL, Brownstein BH, Stormo GD, Bukanova EN, Hott CT, Li F, MacMillan S, Muo JN, Schwertman LA, Smeds MR, Wang Y (2002) Putting the Leishmania genome to work: functional genomics by transposon trapping and expression profiling. Philos Trans R Soc Lond B, Biol Sci 357:47–53

    Article  CAS  Google Scholar 

  • Boucher N, McNicoll F, Dumas C, Papadopoulou B (2002) RNA polymerase I-mediated transcription of a reporter gene integrated into different loci of Leishmania. Mol Biochem Parasitol 119:153–158

    Article  CAS  PubMed  Google Scholar 

  • Breman JG, Alilio MS, Mills A (2004) Conquering the intolerable burden of malaria: what’s new, what’s needed: a summary. Am J Trop Med Hyg 71:1–15

    PubMed  Google Scholar 

  • Carlton J (2003) The Plasmodium vivax genome sequencing project. Trends Parasitol 19:227–231

    Article  CAS  PubMed  Google Scholar 

  • Coates CJ, Jasinskiene N, Miyashiro L, James AA (1998) Mariner transposition and transformation of the yellow fever mosquito, Aedes aegypti. Proc Natl Acad Sci USA 95:3748–3751

    Article  CAS  PubMed  Google Scholar 

  • Coleman BI, Duraisingh MT (2008) Transcriptional control and gene silencing in Plasmodium falciparum. Cell Microbiol 10:1935–1946

    Article  CAS  PubMed  Google Scholar 

  • Collier LS, Largaespada DA (2005) Hopping around the tumor genome: transposons for cancer gene discovery. Cancer Res 65:9607–9610

    Article  CAS  PubMed  Google Scholar 

  • Collier LS, Carlson CM, Ravimohan S, Dupuy AJ, Largaespada DA (2005) Cancer gene discovery in solid tumours using transposon-based somatic mutagenesis in the mouse. Nature 436:272–276

    Article  CAS  PubMed  Google Scholar 

  • Cooper LD, Marquez-Cedillo L, Singh J, Sturbaum AK, Zhang S, Edwards V, Johnson K, Kleinhofs A, Rangel S, Carollo V et al (2004) Mapping Ds insertions in barley using a sequence-based approach. Mol Genet Genomics 272:181–193

    Article  CAS  PubMed  Google Scholar 

  • Croft SL, Sundar S, Fairlamb AH (2006) Drug resistance in leishmaniasis. Clin Microbiol Rev 19:111–126

    Article  CAS  PubMed  Google Scholar 

  • El-Sayed NM, Myler PJ, Blandin G, Berriman M, Crabtree J, Aggarwal G, Caler E, Renauld H, Worthey EA, Hertz-Fowler C et al (2005) Comparative genomics of trypanosomatid parasitic protozoa. Science 309:404–409

    Article  CAS  PubMed  Google Scholar 

  • Fadool JM, Hartl DL, Dowling JE (1998) Transposition of the mariner element from Drosophila mauritiana in zebrafish. Proc Natl Acad Sci USA 95:5182–5186

    Article  CAS  PubMed  Google Scholar 

  • Fischer SE, van Luenen HG, Plasterk RH (1999) Cis requirements for transposition of Tc1-like transposons in C. elegans. Mol Gen Genet 262:268–274

    CAS  PubMed  Google Scholar 

  • Fischer SE, Wienholds E, Plasterk RH (2001) Regulated transposition of a fish transposon in the mouse germ line. Proc Natl Acad Sci USA 98:6759–6764

    Article  CAS  PubMed  Google Scholar 

  • Fraser MJ, Brusca JS, Smith GE, Summers MD (1985) Transposon-mediated mutagenesis of a baculovirus. Virology 145:356–361

    Article  CAS  PubMed  Google Scholar 

  • Freitas-Junior LH, Bottius E, Pirrit LA, Deitsch KW, Scheidig C, Guinet F, Nehrbass U, Wellems TE, Scherf A (2000) Frequent ectopic recombination of virulence factor genes in telomeric chromosome clusters of P. falciparum. Nature 407:1018–1022

    Article  CAS  PubMed  Google Scholar 

  • Gardner MJ, Hall N, Fung E, White O, Berriman M, Hyman RW, Carlton JM, Pain A, Nelson KE, Bowman S et al (2002) Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419:498–511

    Article  CAS  PubMed  Google Scholar 

  • Goryshin IY, Reznikoff WS (1998) Tn5 in vitro transposition. J Biol Chem 273:7367–7374

    Article  CAS  PubMed  Google Scholar 

  • Goyard S, Tosi LR, Gouzova J, Majors J, Beverley SM (2001) New Mos1 mariner transposons suitable for the recovery of gene fusions in vivo and in vitro. Gene 280:97–105

    Article  CAS  PubMed  Google Scholar 

  • Greenwood B, Mutabingwa T (2002) Malaria in 2002. Nature 415:670–672

    Article  CAS  PubMed  Google Scholar 

  • Gueiros-Filho FJ, Beverley SM (1996) Selection against the dihydrofolate reductase-thymidylate synthase (DHFR-TS) locus as a probe of genetic altyerations in Leishmania major. Mol Cell Biol 16:5655–5663

    CAS  PubMed  Google Scholar 

  • Gueiros-Filho FJ, Beverley SM (1997) Trans-kingdom transposition of the Drosophila element mariner within the protozoan Leishmania. Science 276:1716–1719

    Article  CAS  PubMed  Google Scholar 

  • Hamer L, Adachi K, Montenegro-Chamorro MV, Tanzer MM, Mahanty SK, Lo C, Tarpey RW, Skalchunes AR, Heiniger RW, Frank SA et al (2001a) Gene discovery and gene function assignment in filamentous fungi. Proc Natl Acad Sci USA 98:5110–5115

    Article  CAS  PubMed  Google Scholar 

  • Hamer L, DeZwaan TM, Montenegro-Chamorro MV, Frank SA, Hamer JE (2001b) Recent advances in large-scale transposon mutagenesis. Curr Opin Chem Biol 5:67–73

    Article  CAS  PubMed  Google Scholar 

  • Holzer TR, McMaster WR, Forney JD (2006) Expression profiling by whole-genome interspecies microarray hybridization reveals differential gene expression in procyclic promastigotes, lesion-derived amastigotes, and axenic amastigotes in Leishmania mexicana. Mol Biochem Parasitol 146:198–218

    Article  CAS  PubMed  Google Scholar 

  • Ivens AC, Peacock CS, Worthey EA, Murphy L, Aggarwal G, Berriman M, Sisk E, Rajandream MA, Adlem E, Aert R et al (2005) The genome of the kinetoplastid parasite, Leishmania major. Science 309:436–442

    Article  PubMed  Google Scholar 

  • Izsvak Z, Ivics Z, Plasterk RH (2000) Sleeping Beauty, a wide host-range transposon vector for genetic transformation in vertebrates. J Mol Biol 302:93–102

    Article  CAS  PubMed  Google Scholar 

  • Jasinskiene N, Coates CJ, Benedict MQ, Cornel AJ, Rafferty CS, James AA, Collins FH (1998) Stable transformation of the yellow fever mosquito, Aedes aegypti, with the Hermes element from the housefly. Proc Natl Acad Sci USA 95:3743–3747

    Article  CAS  PubMed  Google Scholar 

  • Jeon JS, Lee S, Jung KH, Jun SH, Jeong DH, Lee J, Kim C, Jang S, Yang K, Nam J et al (2000) T-DNA insertional mutagenesis for functional genomics in rice. Plant J 22:561–570

    Article  CAS  PubMed  Google Scholar 

  • Lampe DJ, Churchill ME, Robertson HM (1996) A purified mariner transposase is sufficient to mediate transposition in vitro. EMBO J 15:5470–5479

    CAS  PubMed  Google Scholar 

  • Laurentino EC, Ruiz JC, Brito LO, Fiandt M, Nicoletti LM, Jamur MC, Oliver C, Tosi LR, Cruz AK (2007) The use of Tn5 transposable elements in a gene trapping strategy for the protozoan Leishmania. Int J Parasitol 37:735–742

    Article  CAS  PubMed  Google Scholar 

  • Lavoie BD, Chaconas G (1996) Transposition of phage Mu DNA. Curr Top Microbiol Immunol 204:83–102

    CAS  PubMed  Google Scholar 

  • Leal S, Acosta-Serrano A, Morris J, Cross GA (2004) Transposon mutagenesis of Trypanosoma brucei identifies glycosylation mutants resistant to concanavalin A. J Biol Chem 279:28979–28988

    Article  CAS  PubMed  Google Scholar 

  • Leifso K, Cohen-Freue G, Dogra N, Murray A, McMaster WR (2007) Genomic and proteomic expression analysis of Leishmania promastigote and amastigote life stages: the Leishmania genome is constitutively expressed. Mol Biochem Parasitol 152:35–46

    Article  CAS  PubMed  Google Scholar 

  • Lohe AR, Hartl DL (1996) Autoregulation of mariner transposase activity by overproduction and dominant-negative complementation. Mol Biol Evol 13:549–555

    CAS  PubMed  Google Scholar 

  • Loukeris TG, Arca B, Livadaras I, Dialektaki G, Savakis C (1995) Introduction of the transposable element Minos into the germ line of Drosophila melanogaster. Proc Natl Acad Sci USA 92:9485–9489

    Article  CAS  PubMed  Google Scholar 

  • Lozovsky ER, Nurminsky D, Wimmer EA, Hartl DL (2002) Unexpected stability of mariner transgenes in Drosophila. Genetics 160:527–535

    CAS  PubMed  Google Scholar 

  • Mamoun CB, Gluzman IY, Beverley SM, Goldberg DE (2000) Transposition of the Drosophila element mariner within the human malaria parasite Plasmodium falciparum. Mol Biochem Parasitol 110:405–407

    Article  CAS  PubMed  Google Scholar 

  • Marchini JF, Cruz AK, Beverley SM, Tosi LR (2003) The H region HTBF gene mediates terbinafine resistance in Leishmania major. Mol Biochem Parasitol 131:77–81

    Article  CAS  PubMed  Google Scholar 

  • Martin E, Laloux H, Couette G, Alvarez T, Bessou C, Hauser O, Sookhareea S, Labouesse M, Segalat L (2002) Identification of 1088 new transposon insertions of Caenorhabditis elegans: a pilot study toward large-scale screens. Genetics 162:521–524

    CAS  PubMed  Google Scholar 

  • Martinez-Calvillo S, Nguyen D, Stuart K, Myler PJ (2004) Transcription initiation and termination on Leishmania major chromosome 3. Eukaryot Cell 3:506–517

    Article  CAS  PubMed  Google Scholar 

  • Mates L, Izsvak Z, Ivics Z (2007) Technology transfer from worms and flies to vertebrates: transposition-based genome manipulations and their future perspectives. Genome Biol 8(Suppl 1):S1

    Article  PubMed  Google Scholar 

  • Medhora M, Maruyama K, Hartl DL (1991) Molecular and functional analysis of the mariner mutator element Mos1 in Drosophila. Genetics 128:311–318

    CAS  PubMed  Google Scholar 

  • Merkulov GV, Boeke JD (1998) Libraries of green fluorescent protein fusions generated by transposition in vitro. Gene 222:213–222

    Article  CAS  PubMed  Google Scholar 

  • Myung KS, Beetham JK, Wilson ME, Donelson JE (2002) Comparison of the post-transcriptional regulation of the mRNAs for the surface proteins PSA (GP46) and MSP (GP63) of Leishmania chagasi. J Biol Chem 277:16489–16497

    Article  CAS  PubMed  Google Scholar 

  • Noazin S, Modabber F, Khamesipour A, Smith PG, Moulton LH, Nasseri K, Sharifi I, Khalil EA, Bernal ID, Antunes CM, Kieny MP, Tanner M (2008) First generation leishmaniasis vaccines: a review of field ifficacy trials. Vaccine 26:6759–6767

    Article  CAS  PubMed  Google Scholar 

  • O’Donnell RA, Freitas-Junior LH, Preiser PR, Williamson DH, Duraisingh M, McElwain TF, Scherf A, Cowman AF, Crabb BS (2002) A genetic screen for improved plasmid segregation reveals a role for Rep20 in the interaction of Plasmodium falciparum chromosomes. EMBO J 21:1231–1239

    Article  PubMed  Google Scholar 

  • Pays E (2005) Regulation of antigen gene expression in Trypanosoma brucei. Trends Parasitol 21:517–520

    Article  CAS  PubMed  Google Scholar 

  • Peacock CS, Seeger K, Harris D, Murphy L, Ruiz JC, Quail MA, Peters N, Adlem E, Tivey A, Aslett M et al (2007) Comparative genomic analysis of three Leishmania species that cause diverse human disease. Nat Genet 39:839–847

    Article  CAS  PubMed  Google Scholar 

  • Robinson KA, Goyard S, Beverley SM (2004) In vitro shuttle mutagenesis using engineered mariner transposons. Methods Mol Biol 270:299–318

    CAS  PubMed  Google Scholar 

  • Ross-Macdonald P, Coelho PS, Roemer T, Agarwal S, Kumar A, Jansen R, Cheung KH, Sheehan A, Symoniatis D, Umansky L et al (1999a) Large-scale analysis of the yeast genome by transposon tagging and gene disruption. Nature 402:413–418

    Article  CAS  PubMed  Google Scholar 

  • Ross-Macdonald P, Sheehan A, Friddle C, Roeder GS, Snyder M (1999b) Transposon mutagenesis for the analysis of protein production, function, and localization. Methods Enzymol 303:512–532

    Article  CAS  PubMed  Google Scholar 

  • Rubin EJ, Akerley BJ, Novik VN, Lampe DJ, Husson RN, Mekalanos JJ (1999) In vivo transposition of mariner-based elements in enteric bacteria and mycobacteria. Proc Natl Acad Sci USA 96:1645–1650

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto H, Thiberge S, Akerman S, Janse CJ, Carvalho TG, Menard R (2005) Towards systematic identification of Plasmodium essential genes by transposon shuttle mutagenesis. Nucleic Acids Res 33:e174

    Article  PubMed  Google Scholar 

  • Saxena A, Lahav T, Holland N, Aggarwal G, Anupama A, Huang Y, Volpin H, Myler PJ, Zilberstein D (2007) Analysis of the Leishmania donovani transcriptome reveals an ordered progression of transient and permanent changes in gene expression during differentiation. Mol Biochem Parasitol 152:53–65

    Article  CAS  PubMed  Google Scholar 

  • Sherman A, Dawson A, Mather C, Gilhooley H, Li Y, Mitchell R, Finnegan D, Sang H (1998) Transposition of the Drosophila element mariner into the chicken germ line. Nat Biotechnol 16:1050–1053

    Article  CAS  PubMed  Google Scholar 

  • Silva EK, Gehrke AR, Olszewski K, León I, Chahal JS, Bulyk ML, Llinás M (2008) Specific DNA-binding by apicomplexan AP2 transcription factors. Proc Natl Acad Sci USA 105:8393–8398

    Article  PubMed  Google Scholar 

  • Simarro PP, Jannin J, Cattand P (2008) Eliminating human African trypanosomiasis: where do we stand and what comes next? PLoS Med 5:e55

    Article  PubMed  Google Scholar 

  • Singh J, Zhang S, Chen C, Cooper L, Bregitzer P, Sturbaum A, Hayes PM, Lemaux PG (2006) High-frequency Ds remobilization over multiple generations in barley facilitates gene tagging in large genome cereals. Plant Mol Biol 62:937–950

    Article  CAS  PubMed  Google Scholar 

  • Spradling AC, Stern D, Beaton A, Rhem EJ, Laverty T, Mozden N, Misra S, Rubin GM (1999) The Berkeley Drosophila Genome Project gene disruption project: Single P-element insertions mutating 25% of vital Drosophila genes. Genetics 153:135–177

    CAS  PubMed  Google Scholar 

  • Squina FM, Pedrosa AL, Nunes VS, Cruz AK, Tosi LR (2007) Shuttle mutagenesis and targeted disruption of a telomere-located essential gene of Leishmania. Parasitology 134:511–522

    Article  CAS  PubMed  Google Scholar 

  • Targett GA, Greenwood BM (2008) Malaria vaccines and their potential role in the elimination of malaria. Malaria J 7:1–9

    Article  Google Scholar 

  • Thibault ST, Singer MA, Miyazaki WY, Milash B, Dompe NA, Singh CM, Buchholz R, Demsky M, Fawcett R, Francis-Lang HL et al (2004) A complementary transposon tool kit for Drosophila melanogaster using P and piggyBac. Nat Genet 36:283–287

    Article  CAS  PubMed  Google Scholar 

  • Tosi LR, Beverley SM (2000) cis and trans factors affecting Mos1 mariner evolution and transposition in vitro, and its potential for functional genomics. Nucleic Acids Res 28:784–790

    Article  CAS  PubMed  Google Scholar 

  • Urasaki A, Morvan G, Kawakami K (2006) Functional dissection of the Tol2 transposable element identified the minimal cis-sequence and a highly repetitive sequence in the subterminal region essential for transposition. Genetics 174:639–649

    Article  CAS  PubMed  Google Scholar 

  • Wilson MH, Coates CJ, George AL Jr (2007) PiggyBac transposon-mediated gene transfer in human cells. Mol Ther 15:139–145

    Article  CAS  PubMed  Google Scholar 

  • Zayed H, Izsvak Z, Walisko O, Ivics Z (2004) Development of hyperactive sleeping beauty transposon vectors by mutational analysis. Mol Ther 9:292–304

    Article  CAS  PubMed  Google Scholar 

  • Zhang JK, Pritchett MA, Lampe DJ, Robertson HM, Metcalf WW (2000) In vivo transposon mutagenesis of the methanogenic archaeon Methanosarcina acetivorans C2A using a modified version of the insect mariner-family transposable element Himar1. Proc Natl Acad Sci USA 97:9665–9670

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Marlei J. Augusto for fruitful discussions and for generating the cell lines presented in Fig. 3. Research in the laboratory of L.R.O.T. is supported by FAPESP (07/56187-0) and CNPq; J.D.D. is sponsored by FAPESP (07/54504-9); S.M.B. is supported by the NIH grant AI029646.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luiz R. O. Tosi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Damasceno, J.D., Beverley, S.M. & Tosi, L.R.O. A transposon toolkit for gene transfer and mutagenesis in protozoan parasites. Genetica 138, 301–311 (2010). https://doi.org/10.1007/s10709-009-9406-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-009-9406-7

Keywords

Navigation