Skip to main content
Log in

N2O and NO emissions from different N sources and under a range of soil water contents

  • Published:
Nutrient Cycling in Agroecosystems Aims and scope Submit manuscript

Abstract

Emissions of nitrous oxide (N2O) and nitric oxide (NO) have been identified as one of the most important sources of atmospheric pollution from grasslands. Soils are major sources for the production of N2O and NO, which are by-products or intermediate products of microbial nitrification and denitrification processes. Some studies have tried to evaluate the importance of denitrification or nitrification in the formation of N2O or NO but there are few that have considered emissions of both gases as affected by a wide range of different factors. In this study, the importance of a number of factors (soil moisture, fertiliser type and temperature) was determined for N2O and NO emissions. Nitrous oxide and NO evolution in time and the possibility of using the ratio NO:N2O as an indicator for the processes involved were also explored. Dinitrogen (N2) and ammonia (NH3) emissions were estimated and a mass balance for N fluxes was performed. Nitrous oxide and NO were produced by nitrification and denitrification in soils fertilised with \(\hbox{NH}_{4}^{+}\) and by denitrification in soils fertilised with \(\hbox{NO}_{3}^{-}\). Water content in the soil was the most important factor affecting N2O and NO emissions. Our N2O and NO data were fitted to quadratic (r=0.8) and negative exponential (r=0.7) equations, respectively. A long lag phase was observed for the N2O emitted from soils fertilised with \(\hbox{NO}_{3}^{-}\) (denitrification), which was not observed for the soils fertilised with \(\hbox{NH}_{4}^{+}\) (nitrification) and was possibly due to a greater inhibiting effect of low temperatures on microbial activity controlling denitrification rather than on nitrification. The use of the NO:N2O ratio as a possible indicator of denitrification or nitrification in the formation of N2O and NO was discounted for soils fertilised with \(\hbox{NO}_{3}^{-}\). The N mass balance indicated that about 50 kg N ha−1 was immobilised by microorganisms and/or taken up by plant roots, and that most of the losses ocurred in wet soils (WFPS >60%) as N2 and NH3 losses (>55%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbasi M.K., Adams W.A. (2000). Gaseous N emission during simultaneous nitrification-denitrification associated with mineral N fertilization to a grassland soil under field conditions. Soil Biol. Biochem. 32: 1251–1259

    Article  CAS  Google Scholar 

  • Akiyama H., Tsuruta H. (2003). Nitrous oxide, nitric oxide, and nitrogen dioxide fluxes from soils after manure and urea application. J. Environ. Qual. 32:423–431

    PubMed  CAS  Google Scholar 

  • Alpkem 1986. Nitrate+ Nitrite (A303-S170) p 1–10. RFA Methodology. Alpkem Corp. Clakamas. OR, USA.

  • Alpkem 1987. Ammonia Nitrogen (A303-S020) p 1–7. RFA Methodology. Alpkem Corp. Clakamas. OR, USA.

  • Anderson I.C. and Levine J.S. (1986). Relative rates of nitric oxide and nitrous oxide production by nitrifiers, denitrifiers, and nitrate respirers. Appl. Environ. Microbiol. 51:938–945

    PubMed  CAS  Google Scholar 

  • Aulakh M.S., Doran J.W. and Mosier A.R. (1992). Soil denitrification-significance, measurements and effects of management. Adv. Soil Sci. 18:1–57

    CAS  Google Scholar 

  • Aulakh M.S. and Bijay-Singh (1997). Nitrogen losses and fertilizer N use efficiency in irrigated porous soils. Nutr. Cycl. Agroecosyst. 47:197–212

    Article  Google Scholar 

  • Bandibas J., Vermoesen A., Degroot C.J. and Vancleemput O. (1994). The effect of different moisture regimes and soil characteristics on nitrous-oxide emission and consumption by different soils. Soil Sci. 158:106–114

    Article  CAS  Google Scholar 

  • Bisson G.D. 1994. Sources of nitric and nitrous oxide in grassland soil. Ph.D. Thesis, Reading University.

  • Bouwman A F. (1990). Exchange of greenhouse gases between terrestrial ecosystems and the atmosphere. In: Bowman A.F. (ed). Soils and the Greenhouse Effect. Wiley and Sons, New York

    Google Scholar 

  • Bouwman A.F. (1998). Nitrogen oxides and tropical agriculture. Nature 392:866–867

    Article  CAS  Google Scholar 

  • Bronson K.F. and Mosier A.R. (1993). Effect of nitrogen fertilizer and nitrification inhibitors on methane and nitrous oxide fluxes in irrigated corn. In: Oremland R.S. (eds). Biogeochemistry of Global Change. Chapman and Hall, New York

    Google Scholar 

  • Cárdenas L., Rondon A., Johansson C. and Sanhueza E. (1993). Effects of soil-moisture, temperature, and inorganic nitrogen on nitric-oxide emissions from acidic tropical savanna soils. J. Geophys. Res. Atmos. 98:14783–14790

    Article  Google Scholar 

  • Clayton H., McTaggart I.P., Parker J., Swan L. and Smith K.A. (1997). Nitrous oxide emissions from fertilised grassland: a 2-year study of the effects of N fertiliser form and environmental conditions. Biol. Fertil. Soils 25:252–260

    Article  CAS  Google Scholar 

  • Conrad R., Seiler W. and Bunse G. (1983). Factors influencing the loss of fertilizer nitrogen into the atmosphere as N2O. J. Geophys. Res. 88:6709–6718

    Article  CAS  Google Scholar 

  • Dalal R.C., Wang W.J., Robertson G.P. and Parton W.J. (2003). Nitrous oxide emission from Australian agricultural lands and mitigation options: a review. Aust. J. Soil Res. 41:165–195

    Article  CAS  Google Scholar 

  • Davidson E.A. (1991). Fluxes of nitrous oxide and nitric oxide from terrestrial ecosystems. In: Rogers J.E. and Whitman W.B. (eds). Microbial Production and Consumption of Greenhouse Gases: Methane, Nitrogen Oxides and Halomethanes. American Society for Microbiology, Washington, pp. 219–235

    Google Scholar 

  • Davidson E.A. and Verchot L.V. (2000). Testing the hole-in-the-pipe model of nitric and nitrous oxide emissions from soils using the TRAGNET database. Glob. Biogeochem. Cycle 14:1035–1043

    Article  CAS  Google Scholar 

  • Davidson E.A., Keller M., Erickson H.E., Verchot L.V. and Veldkamp E. (2000). Testing a conceptual model of soil emissions of nitrous and nitric oxides. Bioscience 50:667–680

    Article  Google Scholar 

  • De Klein C.A.M., McTaggart I.P., Smith K.A., Stevens R.J., Harrison R. and Laughlin R.J. (1999). Measurement of nitrous oxide emissions from grassland soil using photo-acoustic infra-red spectroscopy, long-path infrared spectroscopy, gas chromatography, and continuous flow isotope-ratio mass spectrometry. Commun. Soil Sci. Plant Anal. 30:1463–1477

    CAS  Google Scholar 

  • Dobbie K.E. and Smith K.A. (2001). The effects of temperature, water-filled pore space and land use on N2O emissions from an imperfectly drained gleysol. Eur. J. Soil Sci. 52:667–673

    Article  CAS  Google Scholar 

  • Dobbie K.E. and Smith K.A. (2003). Nitrous oxide emission factors for agricultural soils in Great Britain: the impact of soil water-filled pore space and other controlling variables. Glob. Change Biol. 9:204–218

    Article  Google Scholar 

  • Dupain S. and Germon J.C. (1990). Nitrification of an ammoniacal effluent percolating through an inoculated sand column at different temperatures. In: Calvet R. (eds). Nitrates-Agriculture-Eau. INRA, Paris, pp. 181–188

    Google Scholar 

  • Estavillo J.M., Merino P., Pinto M., Yamulki S., Gebauer G., Sapek A. and Corre W. (2002). Short term effect of ploughing a permanent pasture on N2O production from nitrification and denitrification. Plant Soil 239:253–265

    Article  CAS  Google Scholar 

  • Firestone M.K., Smith M.S., Firestone R.B. and Tiedje J.M. (1979). The influence of nitrate, nitrite, and O on the composition of the gaseous products of denitrification in soil. Soil Sci. Soc. Am. J. 43:1140–1144

    Article  CAS  Google Scholar 

  • Firestone M.K and Davidson E.A. (1989). Microbial basis of NO and N2O production and consumption in soil. In: Andreae M.O. and Schimel D.S. (eds). Exchange of trace gases between terrestrial ecosystems and the atmosphere: report of the Dahlem workshop. Berlin, Wiley and Sons, New York

    Google Scholar 

  • Freney J.R., Simpson J.R., Denmead O.T., Muirhead W.A. and Leuning R. (1985). Transformation and transfer of nitrogen after irrigating a cracking clay soil with a urea solution. Aust. J. Agric. Res. 36:685–694

    Article  Google Scholar 

  • Granli T. and Bockman O.C. 1994. Nitrous oxide from agriculture. Norw. J. Agri. Sci. Supplement No. 12: 128.

    Google Scholar 

  • Harrison R.M., Yamulki S., Goulding K.W.T. and Webster C.P. (1995). Effect of fertiliser application on NO and N2O fluxes from agricultural fields. J. Geophys. Res. 100:25923–25931

    Article  Google Scholar 

  • IPCC (1996). Climate Change 1995 Cambridge University Press, Cambridge

    Google Scholar 

  • Lægreid M., Bockman OC. and Kaarstad O. 1999. Agriculture, Fertilizers and the Environment. CABI Publishing

  • Lipschultz F., Zafiriou O.C., Wofsy S.C., McElroy M.B., Valois F.W. and Watson S.W. (1981). Production of NO and N2O by Soil Nitrifying Bacteria. Nature 294:641–643

    Article  CAS  Google Scholar 

  • Maag M. and Vinther F.P. (1996). Nitrous oxide emission by nitrification and denitrification in different soil types and at different soil moisture contents and temperatures. Appl. Soil Ecol. 4:5–14

    Article  Google Scholar 

  • Macadam X.M.B., del Prado A., Merino P., Estavillo J.M., Pinto M. and Gonzalez-Murua C. (2003). Dicyandiamide and 3,4-dimethyl pyrazole phosphate decrease N2O emissions from grassland but dicyandiamide produces deleterious effects in clover. J. Plant Phys. 160:1517–1523

    Article  CAS  Google Scholar 

  • Mahmood T., Ali R., Malik K.A. and Shamsi S.R.A. (1997). Denitrification with and without maize plants (Zea mays L.) under irrigated field conditions. Biol. Fertil. Soil. 24:323–328

    Article  CAS  Google Scholar 

  • Meixner F.X, Fickinger T., Marufu L., Serca D., Nathaus F.J., Makina E., Mukurumbira L. and Andreae M.O. (1997). Preliminary results on nitric oxide emission from a southern African savanna ecosystem. Nutr. Cycl. Agroecosyst. 48:123–138

    Article  CAS  Google Scholar 

  • Merino P., Estavillo J.M., Pinto M., Rodriguez M., Duñabeitia M.K. and González-Murua C. (2001a). Nitrous oxide emissions from grassland in an intensive dairy farm in the Basque Country of Spain. Soil Use Manage. 17:121–127

    Article  Google Scholar 

  • Merino P., Estavillo J.M., Besga G., Pinto M. and González-Murua C. (2001b). Nitrification and denitrification derived N2O production from a grassland soil under application of DCD and Actilith F2. Nutr. Cycl. Agroecosyst. 60:9–14

    Article  CAS  Google Scholar 

  • Merino P., Estavillo J.M., Graciolli L.A., Pinto M., Lacuesta M., Muñoz-Rueda A. and González-Murua C. (2002). Mitigation of N2O emissions from grassland by nitrification inhibitor and Actilith F2 applied with fertilizer and cattle slurry. Soil Use Manage. 18:135–141

    Article  Google Scholar 

  • Merino P., Menendez S., Pinto M., Gonzalez-Murua C. and Estavillo J.M. (2005). 3,4-dimethylpyrazole phosphate reduces nitrous oxide emissions from grassland after slurry application. Soil Use Manage. 21:53–57

    Article  Google Scholar 

  • Misselbrook T.H, Sutton M.A. and Scholefield D. (2004). A simple process-based model for estimating ammonia emissions from agricultural land after fertilizer applications. Soil Use Manage 20:365–372

    Article  Google Scholar 

  • Muller C., Sherlock R.R. and Williams P.H. (1998). Field method to determine N2O emission from nitrification and denitrification. Biol. Fertil. Soils 28: 51–55

    Article  CAS  Google Scholar 

  • Murakami T., Owa N. and Kumazawa K. (1987). The effects of soil conditions and nitrogen form on nitrous oxide evolution by denitrification. Soil Sci. Plant Nutr. 33:35:42

    CAS  Google Scholar 

  • Oenema O., Velthof G.L., Yamulki S., Jarvis S.C. and Smith K. (1997). Nitrous oxide emissions from grazed grassland. Soils and the greenhouse effect. Soil Use Manage 13:288–295

    Article  Google Scholar 

  • Parton W.J., Mosier A.R., Ojima D.S., Valentine D.W., Schimel D.S., Weier K. and Kulmala A.E. (1996). Generalized model for N2 and N2O production from nitrification and denitrification. Glob. Biogeochem. Cycles 10:401–412

    Article  CAS  Google Scholar 

  • Paul E.A. and Clark F.E. (1996). Soil microbiology and biochemistry. 2nd Edition. Academic Press, New York

    Google Scholar 

  • Pinto M., Merino P., del Prado A., Estavillo J.M., Yamulki S., Gebauer G., Piertzak S., Lauf J. and Oenema O. (2004). Increased emissions of nitric oxide and nitrous oxide following tillage of a perennial pasture. Nutr. Cycl. Agroecosyst. 70:13–22

    Article  CAS  Google Scholar 

  • Ryden J.C. (1983). Denitrification loss from a grassland soil in the field receiving different rates of nitrogen as ammonium nitrate. J. Soil Sci. 34:355–365

    Article  CAS  Google Scholar 

  • Saxton K.E., Rawls W.J., Romberger J.S. and Papendick R.I. (1986). Estimating generalized soil–water characteristics from texture. Soil Sci. Soc. Am. J. 50:1031–1036

    Article  Google Scholar 

  • Schmidt U., Thoni H. and Kaupenjohann M. (2000). Using a boundary line approach to analyze N2O flux data from agricultural soils. Nutr. Cycl. Agroecosyst. 57:119–129

    Article  CAS  Google Scholar 

  • Scholefield D., Hawkins J.M.B. and Jackson S.M. (1997). Use of a flowing helium atmosphere incubation technique to measure the effects of denitrification controls applied to intact cores of a clay soil. Soil Biol. Biochem. 29:1337–1344

    Article  CAS  Google Scholar 

  • Shepherd M.F., Barzetti S. and Hastie D.R. (1991). The Production of Atmospheric NO x and N2O from a Fertilized Agricultural Soil. Atmos. Environ. Part A. General Topics 25:1961–1969

    Article  Google Scholar 

  • Skiba U., Hargreaves K.J., Fowler D. and Smith K.A. (1992). Fluxes of nitric and nitrous oxides from agricultural soils in a cool temperate climate. Atmos. Environ. Part A. General Topics 26:2477–2488

    Article  Google Scholar 

  • Skiba U., Fowler D. and Smith K. (1994). Emissions of NO and N2O from soils. Environ. Monit. Assess. 31:153–158

    Article  CAS  Google Scholar 

  • Skiba U., Fowler D. and Smith K.A. (1997) Nitric oxide emissions from agricultural soils in temperate and tropical climates: sources, controls and mitigation options. Nutr. Cycl. Agroecosyst. 48:139–153

    Article  CAS  Google Scholar 

  • Skiba U., Sheppard L.J., MacDonald J. and Fowler D. (1998). Some key environmental variables controlling nitrous oxide emissions from agricultural and semi-natural soils in Scotland. Atmos. Environ. 32:3311–3320

    Article  CAS  Google Scholar 

  • Skiba U. and Ball B. (2002). The effect of soil texture and soil drainage on emissions of nitric oxide and nitrous oxide. Soil Use Manage. 18:56–60

    Article  Google Scholar 

  • Slemr F. and Seiler W. (1984). Field-measurements of NO and N2O emissions from fertilized and unfertilized soils. J. Atmos. Chem. 2:1–24

    Article  CAS  Google Scholar 

  • Stevens R.J., Laughlin R.J., Burns L.C., Arah J.R.M. and Hood R.C. (1997). Measuring the contributions of nitrification and denitrification to the flux of nitrous oxide from soil. Soil Biol. Biochem. 29:139–151

    Article  CAS  Google Scholar 

  • Thornton F.C., Bock B.R, Tyler D.D. (1996). Soil emissions of nitric oxide and nitrous oxide from injected anhydrous ammonium and urea. J. Environ. Qual. 25:1378–1384

    CAS  Google Scholar 

  • Tiedje J.M. (1988). Ecology of denitrification and dissimilatory nitrate reduction to ammonium. In: Zehnder A.J.B. (eds). Environmental Microbiology of Anaerobes. John Wiley and Sons, NY, USA, pp. 179–244

    Google Scholar 

  • Velthof G.L. and Oenema O. (1995). Nitrous oxide fluxes from grassland in the Netherlands: I. Statistical analysis of flux-chamber measurements. Eur. J. Soil Sci. 46:533–540

    Article  Google Scholar 

  • Velthof G.L, van Groenigen J.W., Gebauer G., Pietrzak S., Jarvis S.C., Pinto M., Corré W. and Oenema O. (2000). Temporal stability of spatial patterns of nitrons oxide fluxes from sloping grassland. J. Environ. Qual. 29:1397–1407

    Article  CAS  Google Scholar 

  • Venterea R.T. and Rolston D.E. (2000). Nitric and nitrous oxide emissions following fertilizer application to agricultural soil: biotic and abiotic mechanisms and kinetics. J. Geophys. Res. Atmos. 105:15117–15129

    Article  CAS  Google Scholar 

  • Vos G.J.M., Bergevoet I.M.J., Vedy J.C. and Neyroud J.A. (1994). The fate of spring applied fertilizer-N during the autumn-winter period – comparison between winter-fallow and green manure cropped soil. Plant Soil 160:201–213

    Article  CAS  Google Scholar 

  • Watson C.J. (1986). Preferential uptake of ammonium nitrogen from soil by ryegrass under simulated spring conditions. J. Agri. Sci. 107:171–177

    Article  CAS  Google Scholar 

  • Webb J., Sutton M., Kroeze C., Skiba U., Winiwater W., Pain␣B., Bonazzi G., Svedinger I. and Simpson D. 1999. Cultures with fertilizers. EMEP/CORINAIR. Emission Inventory Guidebook. AAE Technology Culham Abingdon Oxfordshire UK Section 1010.

  • Weier K.L., Doran J.W, Power J.F. and Walters D.T. (1993). Denitrification and the dinitrogen nitrous-oxide ratio as affected by soil–water, available carbon, and nitrate. Soil Sci. Soc. Am. J. 57:66–72

    Article  CAS  Google Scholar 

  • Whitehead A.C. (1995). Grassland Nitrogen. CAB international Wallingford, Oxon

    Google Scholar 

  • Williams E.J., Hutchinson G.L. and Fehsenfeld F.C. (1992). NO x and N2O emissions from soil. Glob. Biogeochem. Cycles 6:351–388

    Article  CAS  Google Scholar 

  • Williams P.H., Jarvis S.C. and Dixon E. (1996). Fertilizer and grazing effects on N2O/NO release. In: Jarvis S.C. and Pain B.F. (eds). Gaseous Nitrogen Emissions from Grasslands. CAB international, New York

    Google Scholar 

  • Williams P.H., Jarvis S.C. and Dixon E. (1998). Emission of nitric oxide and nitrous oxide from soil under field and laboratory conditions. Soil Biol. Biochem. 30:1885–1893

    Article  CAS  Google Scholar 

  • Wrage N., Lauf J., del Prado A., Pinto M., Pietrzak S., Yamulki S., Oenema O. and Gebauer G. (2004). Distinguishing sources of N2O in European grasslands by stable isotope analysis. Rapid Commun. Mass Spectrom. 18:1201–1207

    Article  PubMed  CAS  Google Scholar 

  • Yamulki S., Harrison R.M., Goulding K.W.T. and Webster C.P. (1997). N2O, NO and NO2 fluxes from a grassland: effect of soil pH. Soil Biol. Biochem. 29:1199–1208

    Article  CAS  Google Scholar 

  • Yamulki S., Toyoda S., Yoshida N., Veldkamp E., Grant B. and Bol R. (2001). Diurnal fluxes and the isotopomer ratios of N2O in a temperate grassland following urine amendment. Rapid Commun. Mass Spectrom. 15:1263–1269

    Article  PubMed  CAS  Google Scholar 

  • Yang W.X. and Meixner F.X. (1997). Laboratory studies on the release of nitric oxide from subtropical grassland soils: The effect of soil temperature and moisture. In: Jarvis S.C. and Pain B.F. (eds). Gaseous Nitrogen Emissions from Grasslands. CAB international, New York

    Google Scholar 

  • Ye RW., Averill B.A. and Tiedje J.M. (1994). Denitrification. Production and consumption of nitric oxide. Appl. Environ. Microbiol. 60:1053–1058

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This project was funded by the Spanish Ministry␣of Agriculture, Fishing and Nutrition. The authors would like to thank David Scholefield, Laura Cardenas, David Hogan, Christopher Macleod, Elaine Jewkes, Phil Nightingale and Yelena Grigorenko for their useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. del Prado.

Rights and permissions

Reprints and permissions

About this article

Cite this article

del Prado, A., Merino, P., Estavillo, J.M. et al. N2O and NO emissions from different N sources and under a range of soil water contents. Nutr Cycl Agroecosyst 74, 229–243 (2006). https://doi.org/10.1007/s10705-006-9001-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10705-006-9001-6

Keywords

Navigation