Skip to main content
Log in

The Meaning, Selection, and Use of the Peridynamic Horizon and its Relation to Crack Branching in Brittle Materials

  • Letters in Fracture and Micromechanics
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

This note discusses the peridynamic horizon (the nonlocal region around a material point), its role, and practical use in modelling. The objective is to eliminate some misunderstandings and misconceptions regarding the peridynamic horizon. An example of crack branching in a nominally brittle material (homalite) is addressed and we show that crack branching takes place without wave interaction. We explain under what conditions the crack propagation speed depends on the horizon size and the role of incident stress waves on this speed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agwai A., Guven I., Madenci E. (2011) Predicting crack propagation with peridynamics: a comparative study. Int. J. Fract. 171: 65–78

    Article  Google Scholar 

  • Bobaru F. (2011) Peridynamics and multiscale modeling. Int. J. Multiscale Com. Eng. 9(6): vii–ix

    Article  Google Scholar 

  • Bobaru F., Yang M., Alves L.F., Silling S.A., Askari E., Xu J. (2009) Convergence, adaptive refinement, and scaling in 1d peridynamics. Int. J. Numer. Meth. Eng. 77(6): 852–877

    Article  Google Scholar 

  • Bobaru F., Duangpanya M. (2010) The peridynamic formulation for transient heat conduction. Int. J. Heat Mass Tran. 53(19-20): 4047–4059

    Article  Google Scholar 

  • Bobaru F., Ha Y.D. (2011) Adaptive refinement and multiscale modeling in 2d peridynamics. Int. J. Multiscale Com. Eng. 9(6): 635–659

    Article  Google Scholar 

  • Field J.E. (1971) Brittle fracture: its study and application. Contemp Phys 12(1): 1–31

    Article  Google Scholar 

  • Ha Y.D., Bobaru F. (2010) Studies of dynamic crack propagation and crack branching with peridynamics. Int. J. Fract. 162(1-2): 229–244

    Article  Google Scholar 

  • Ha Y.D., Bobaru F. (2011) Characteristics of dynamic brittle fracture captured with peridynamics. Eng. Fract. Mech. 78(6): 1156–1168

    Article  Google Scholar 

  • Ha Y.D., Bobaru F. (2011b). Dynamic brittle fracture captured with Peridynamics. Proc. of IMECE 2011, November 11- 17, 2011, Denver, Colorado, USA: IMECE2011-65515.

  • Israelachvili, J.N. (1992). Intermolecular and Surface Forces. Academic Press, second edition.

  • Livne A., Ben-David O., Fineberg J. (2007) Oscillations in rapid fracture. Phys. Rev. Lett. 98(12): 124301

    Article  Google Scholar 

  • Ramulu M., Kobayashi A.S., Kang B.S.J., Barker D.B. (1983) Further studies on dynamic crack branching. Exp. Mech. 23(4): 431–437

    Article  Google Scholar 

  • Ramulu M., Kobayashi A.S. (1985) Mechanics of crack curving and branching: a dynamic fracture analysis. Int. J. Fract. 27: 187–201

    Article  Google Scholar 

  • Ravi-Chandar K. (1998) Dynamic fracture of nominally brittle materials. Int. J. Fract. 90(1-2): 83–102

    Article  CAS  Google Scholar 

  • Ravi-Chandar K. (2004). Dynamic fracture. Elsevier

  • Ravi-Chandar K., Knauss W.G. (1984) An experimental investigation into dynamic fracture - III. On steady state crack propagation and branching, Int. J. Fract. 26: 141–154

    Google Scholar 

  • Scheibert J., Guerra C., Célarié F., Dalmas D., Bonamy D. (2010) Brittle-quasibrittle transition in dynamic fracture: An energetic signature, Phys. Rev. Lett. 104(4): 045501

    Article  CAS  Google Scholar 

  • Seleson P., Parks M.L., Gunzburger M., Lehoucq R.B. (2009) Peridynamics as an upscaling of molecular dynamics. Multiscale Model. Sim. 8(1): 204–227

    Article  Google Scholar 

  • Silling S.A. (2000) Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech Phys Solids 48(1): 175–209

    Article  Google Scholar 

  • Silling S.A. (2011) A coarsening method for linear peridynamics. Int. J. Multiscale Com.Eng. 9(6): 609–621

    Article  Google Scholar 

  • Silling S.A., Bobaru F. (2005) Peridynamic modeling of membranes and fibers. Int. J. Nonlinear Mech. 40: 395–409

    Article  Google Scholar 

  • Silling S.A., Epton M., Weckner O., Xu J., Askari E. (2007) Peridynamic states and constitutive modeling. J. Elast. 88(2): 151–184

    Article  Google Scholar 

  • Silling S.A., Lehoucq R. (2008) Convergence of peridynamics to classical elast theory. J. Elast. 93: 13–37

    Article  Google Scholar 

  • Silling S.A., Lehoucq R.B. (2010) Peridynamic theory of solid mechanics. Adv. Appl. Mech. 44: 73–168

    Article  Google Scholar 

  • Streit R., Finnie L. (1980) An experimental investigation of crack-path directional stability. Exp. Mech. 20(1): 17–23

    Article  Google Scholar 

  • Weckner O., Silling S.A. (2011) Determination of nonlocal constitutive equations from phonon dispersion relations. Int. J. Multiscale Com. Eng. 9(6): 623–634

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florin Bobaru.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bobaru, F., Hu, W. The Meaning, Selection, and Use of the Peridynamic Horizon and its Relation to Crack Branching in Brittle Materials. Int J Fract 176, 215–222 (2012). https://doi.org/10.1007/s10704-012-9725-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-012-9725-z

Keywords

Navigation