Skip to main content
Log in

Axiomatic Geometric Formulation of Electromagnetism with Only One Axiom: The Field Equation for the Bivector Field F with an Explanation of the Trouton-Noble Experiment

  • Original Article
  • Published:
Foundations of Physics Letters

Abstract

In this paper we present an axiomatic, geometric, formulation of electromagnetism with only one axiom: the field equation for the Faraday bivector field F. This formulation with F field is a self-contained, complete and consistent formulation that dispenses with either electric and magnetic fields or the electromagnetic potentials. All physical quantities are defined without reference frames, the absolute quantities, i.e., they are geometric four-dimensional (4D) quantities or, when some basis is introduced, every quantity is represented as a 4D coordinate-based geometric quantity comprising both components and a basis. The new observer-independent expressions for the stress-energy vector T(n) (1-vector), the energy density U (scalar), the Poynting vector S and the momentum density g (1-vectors), the angular momentum density M (bivector) and the Lorentz force K ((1-vector) are directly derived from the field equation for F. The local conservation laws are also directly derived from that field equation. The 1-vector Lagrangian with the F field as a 4D absolute quantity is presented; the interaction term is written in terms of F and not, as usual, in terms of A. It is shown that this geometric formulation is in a full agreement with the Trouton-Noble experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. 1. D. Hestenes, Space-Time Algebra (Gordon & Breach, New York, 1966); Space-Time Calculus; available at: http://modelingnts.la.asu.edu/evolution.html; New Foundations for Classical Mechanics (Kluwer Academic, Dordrecht, 1999), 2nd. edn.; Am. J Phys. 71, 691 (2003).

    Google Scholar 

  2. 2. C. Doran and A. Lasenby, Geometric Algebra for Physicists (Cambridge University Press, Cambridge, 2003).

    Google Scholar 

  3. 3. B. Jancewicz, Multivectors and Clifford Algebra in Electrodynamics (World Scientific, Singapore, 1989).

    Google Scholar 

  4. 4. D. Hestenes and G. Sobczyk, Clifford Algebra to Geometric Calculus (Reidel, Dordrecht, 1984).

    Google Scholar 

  5. 5. J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1977), 2nd edn., L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields (Pergamon, Oxford, 1979), 4th edn. C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation (Freeman, San Francisco, 1970). W.G.T.V. Rosser, Classical Electromagnetism via Relativity (Plenum, New York, 1968).

    Google Scholar 

  6. 6. A. Einstein, Ann. Phys. 49, 769 (1916), tr. by W. Perrett and G.B. Jeffery, in The Principle of Relativity (Dover, New York, 1952).

    Google Scholar 

  7. 7. Yu. N. Obukhov and F. W. Hehl, Phys. Lett. A 311, 277 (2003).

    Article  Google Scholar 

  8. 8. F. W. Hehl and Yu. N. Obukhov, Foundations of Classical Electrodynamics (Birkhäuser, Boston, MA, 2003). F. W. Hehl, Yu. N. Obukhov, and G. F. Rubilar, physics/9907046. F.W. Hehl, Yu.N. Obukhov, physics/0005084.

    Google Scholar 

  9. 9. J. J. Cruz Guzmán and Z. Oziewicz, Bull. Soc. Sci. Lett. Lódź 53, 107 (2003).

    Google Scholar 

  10. 10. T. Ivezić, Found. Phys. 33, 1339 (2003); physics/0411166; to be published in Found. Phys. Lett..

    Article  Google Scholar 

  11. 11. T. Ivezić, physics/0409118 v2, to be published in Found. Phys.

  12. 12. A. Einstein, Ann. Physik. 17, 891 (1905), tr. by W. Perrett and G.B. Jeffery, in The Principle of Relativity (Dover, New York, 1952).

    Google Scholar 

  13. 13. T. Ivezić, Found. Phys. 31, 1139 (2001).

    Article  Google Scholar 

  14. 14. T. Ivezić, Found. Phys. Lett. 15, 27 (2002); physics/0103026; physics/0101091.

    Article  Google Scholar 

  15. 15. T. Ivezić, hep-th/0207250; hep-ph/0205277.

  16. 16. 16. M. Riesz, Clifford Numbers and Spinors, Lecture Series No. 38 (The Institute for Fluid Dynamics and Applied Mathematics, University of Maryland, 1958).

    Google Scholar 

  17. 17. D. Hestenes, in Clifford Algebras and their Applications in Mathematical Physics, F. Brackx et al, eds. (Kluwer Academic, Dordrecht, 1993).

    Google Scholar 

  18. 18. T. Ivezić and Lj. Škovrlj, unpublished results. Lj. Škovrlj, Thesis (2002) (in Croatian).

  19. 19. R. M. Wald, General Relativity (Chicago University Press, Chicago, 1984). M. Ludvigsen, General Relativity, A Geometric Approach (Cambridge University Press, Cambridge, 1999). S. Sonego and M. A. Abramowicz, J. Math. Phys. 39, 3158 (1998). D.A. T. Vanzella, G. E. A. Matsas, H. W. Crater, Am. J. Phys. 64, 1075 (1996).

    Google Scholar 

  20. 20. A. T. Hyman, Am. J. Phys. 65, 195 (1997). G. Mũnoz, Am. J. Phys. 65, 429 (1997).

    Article  Google Scholar 

  21. 21. A. Sudbery, J. Phys. A: Math. Gen. 19, L33–36 (1986).

    Article  Google Scholar 

  22. 22. W. K. H. Panofsky and M. Phillips, Classical Electricity and Magnetism (Addison-Wesley, Reading, MA, 1962), 2nd edn.

    Google Scholar 

  23. 23. L. Nieves, M. Rodriguez, G. Spavieri, and E. Tonni, Nuovo Cimento B 116, 585 (2001). G. Spavieri and G.T. Gillies, Nuovo Cimento B 118, 205 (2003).

    Google Scholar 

  24. 24. F. T. Trouton and H. R. Noble, Philos. Trans. R. Soc. London Ser. A 202, 165 (1903).

    Google Scholar 

  25. 25. H. C. Hayden, Rev. Sci. Instrum. 65, 788 (1994).

    Article  Google Scholar 

  26. 26. A. K. Singal, Am. J. Phys. 61, 428 (1993).

    Google Scholar 

  27. 27. M. von Laue, Phys. Z. 12, 1008 (1911).

    Google Scholar 

  28. 28. W. Pauli, Theory of Relativity (Pergamon, New York, 1958).

    Google Scholar 

  29. 29. S. A. Teukolsky, Am. J. Phys. 64, 1104 (1996).

    Article  Google Scholar 

  30. 30. O. D. Jefimenko, J. Phys. A: Math. Gen. 32, 3755 (1999).

    Article  Google Scholar 

  31. 31. T. Ivezić, Found. Phys. Lett. 12, 105 (1999).

    Article  Google Scholar 

  32. 32. S. Aranoff, Nuovo Cimento B 10, 155 (1972).

    Google Scholar 

  33. 33. T. Ivezić, Found. Phys. Lett. 12, 507 (1999).

    Article  Google Scholar 

  34. 34. J. D. Bjorken and S. D. Drell, Relativistic Quantum Field (McGraw-Hill, New York, 1964). F. Mandl and G. Shaw, Quantum Field Theory (Wiley, New York, 1995). S. Weinberg, The Quantum Theory of Fields, Vol. I Foundations (Cambridge University, Cambridge, 1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomislav Ivezić.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivezić, T. Axiomatic Geometric Formulation of Electromagnetism with Only One Axiom: The Field Equation for the Bivector Field F with an Explanation of the Trouton-Noble Experiment. Found Phys Lett 18, 401–429 (2005). https://doi.org/10.1007/s10702-005-7533-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10702-005-7533-7

Key words:

Navigation