Skip to main content
Log in

On the Relationship Between the Wigner-Moyal and Bohm Approaches to Quantum Mechanics: A Step to a More General Theory?

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

In this paper we show that the three main equations used by Bohm in his approach to quantum mechanics are already contained in the earlier paper by Moyal which forms the basis for what is known as the Wigner-Moyal approach. This shows, contrary to the usual perception, that there is a deep relation between the two approaches. We suggest the relevance of this result to the more general problem of constructing a quantum geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bohm, D., Bub, J.: A proposed solution to the measurement problem in quantum mechanics by a hidden variable theory. Rev. Mod. Phys. 38, 453–469 (1966)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  2. Bohm, D., Bub, J.: A refutation of a proof by Jauch and Piron that hidden variables can be excluded in quantum mechanics. Rev. Mod. Phys. 38, 470–475 (1966)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  3. Penrose, R.: Twistor algebra. J. Math. Phys. 8, 345–366 (1967)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  4. Wheeler, J.A.: Superspace and the nature of quantum geometrodynamics. In: DeWitt, C.M., Wheeler, J.A. (eds.) Battelle Rencontres, pp. 242–307. Benjamin, New York (1968)

    Google Scholar 

  5. Penrose, P.: On the nature of quantum geometry. In: Klauder, J.R. (ed.) Magic without Magic. Freeman, San Francisco (1972)

    Google Scholar 

  6. Rodrigues, Jr. W.A.: Algebraic and Dirac-Hestenes spinors and spinor fields. J. Math. Phys. 45, 2908–2944 (2004)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  7. Francis, M.R., Kosowsky, A.: The construction of spinors in geometric algebra. Ann. Phys. 317, 383–409 (2005)

    MATH  MathSciNet  ADS  Google Scholar 

  8. Penrose, R.: The Road to Reality. Vintage Books, London (2004)

    Google Scholar 

  9. Bohm, D.: A suggested interpretation of the quantum theory in terms of hidden variables, I. Phys. Rev. 85, 166–179 (1952)

    Article  MathSciNet  ADS  Google Scholar 

  10. Bohm, D.: A suggested interpretation of the quantum theory in terms of hidden variables, II. Phys. Rev. 85, 180–193 (1952)

    Article  MathSciNet  ADS  Google Scholar 

  11. Dürr, D., Goldstein, S., Zanghi, N.: Quantum equilibrium and the origin of absolute uncertainty. J. Stat. Phys. 67, 843–907 (1992)

    Article  MATH  ADS  Google Scholar 

  12. Dürr, D., Goldstein, S., Zanghi, N.: Bohmian mechanics as the foundation of quantum mechanics. In: Cushing, J.T., Fine, A., Goldstein, S. (eds.) Bohmian Mechanics and Quantum Theory: An Appraisal. Boston Studies in the Philosophy of Science, vol. 184, p. 26. Kluwer, Dordrecht (1996)

    Google Scholar 

  13. Bohm, D.: Wholeness and the Implicate Order. Routledge, London (1980)

    Google Scholar 

  14. Bohm, D., Hiley, B.J.: Twistors. Rev. Briasileira de Fisica, Volume Especial, Os 70 anos de Mario Schönberg, 1–26 (1984)

  15. Bohm, D.: Time, the implicate order and pre-space. In: Griffen, D.R. (ed.) Physics and the Ultimate Significance of Time, pp. 172–176. SUNY Press, New York (1986) and pp. 177–208

    Google Scholar 

  16. Bohm, D., Hiley, B.J.: The Undivided Universe: An Ontological Interpretation of Quantum Theory. Routledge, London (1993)

    Google Scholar 

  17. Wigner, E.: On the quantum correction for thermodynamic equilibrium. Phys. Rev. 40, 749–759 (1932)

    Article  MATH  ADS  Google Scholar 

  18. Moyal, J.E.: Quantum mechanics as a statistical theory. Proc. Camb. Philos. Soc. 45, 99–123 (1949)

    Article  MATH  MathSciNet  Google Scholar 

  19. Bohm, D.: Chance and Causality in Modern Physics. Routledge & Kegan Paul, London (1957)

    Book  Google Scholar 

  20. Feynman, R.P.: Negative probability. In: Hiley, B.J., Peat, F.D. (eds.) Quantum Implications, pp. 235–248. Routledge & Kegan Paul, London (1987)

    Google Scholar 

  21. Bohm, D.: Comments on a letter concerning the causal interpretation of quantum theory. Phys. Rev. 89, 319–320 (1953)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  22. de Gosson, M.: The quantum motion of half-densities and the derivation of Schrödinger’s equation. J. Phys. A: Math. Gen. 31, 4239–4247 (1998)

    Article  MATH  ADS  Google Scholar 

  23. Zeh, H.D.: Why Bohm’s quantum theory? Found. Phys. Lett. 12, 197–200 (1999)

    Article  MathSciNet  Google Scholar 

  24. Weyl, H.: In: The Theory of Groups and Quantum Mechanics, p. 274. Dover, London (1931)

    Google Scholar 

  25. Takabayasi, T.: The formulation of quantum mechanics in terms of ensemble in phase space. Prog. Theor. Phys. 11, 341–374 (1954)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  26. Carruthers, P., Zachariasen, F.: Quantum collision theory with phase-space distributions. Rev. Mod. Phys. 55, 245–285 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  27. Schempp, W.J.: Harmonic Analysis on the Heisenberg Nilpotent Lie Group with Applications to Signal Theory. Pitman Research Notes in Mathematics Series, vol. 147. Longman Scientific & Technical, New York (1986)

    MATH  Google Scholar 

  28. Moran, W., Manton, J.H.: In: Byrne, J.S. (ed.) Computational Noncommutative Algebra and Applications. NATO Science Series, pp. 339–362. Kluwer Academic, Amsterdam (2004)

    Google Scholar 

  29. Hiley, B.J.: Towards a dynamics of moments: the role of algebraic deformation and inequivalent vacuum states. In: Bowden K.G. (ed.) Correlations Proc. ANPA, vol. 23, pp. 104–134 (2001)

  30. de Gosson, M.: Phys. Lett. A 330, 161–167 (2004)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  31. van Oystaeyen, F.: Virtual Topology and Functor Geometry. Lecture Notes in Pure and Applied Mathematics, vol. 256. Chapman and Hall, New York (2007)

    Google Scholar 

  32. Hiley, B.J.: Phase space descriptions of quantum phenomena. In: Khrennikov, A. (ed.) Proc. Int. Conf. Quantum Theory: Reconsideration of Foundations, vol. 2, pp. 267–286. Växjö University Press, Växjö (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. J. Hiley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hiley, B.J. On the Relationship Between the Wigner-Moyal and Bohm Approaches to Quantum Mechanics: A Step to a More General Theory?. Found Phys 40, 356–367 (2010). https://doi.org/10.1007/s10701-009-9320-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-009-9320-y

Keywords

Navigation