Skip to main content
Log in

Four-Dimensional Geometric Quantities versus the Usual Three-Dimensional Quantities: The Resolution of Jackson’s Paradox

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

In this paper we present definitions of different four-dimensional (4D) geometric quantities (Clifford multivectors). New decompositions of the torque N and the angular momentum M (bivectors) into 1-vectors Ns, Nt and Ms, Mt, respectively, are given. The torques Ns, Nt (the angular momentums Ms, Mt), taken together, contain the same physical information as the bivector N (the bivector M). The usual approaches that deal with the 3D quantities \(\varvec{E,\,B,\,F,\,L,\,N}\) etc. and their transformations are objected from the viewpoint of the invariant special relativity (ISR). In the ISR, it is considered that 4D geometric quantities are well-defined both theoretically and experimentally in the 4D spacetime. This is not the case with the usual 3D quantities. It is shown that there is no apparent electrodynamic paradox with the torque, and that the principle of relativity is naturally satisfied, when the 4D geometric quantities are used instead of the 3D quantities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Jackson J.D. (1977). Classical Electrodynamics, 2nd edn. Wiley, New York

    MATH  Google Scholar 

  2. Jackson J.D. (2004). Am. J. Phys. 72: 1484

    Article  ADS  Google Scholar 

  3. Jefimenko O.D. (1997). Retardation and Relativity. Electret Scientific, Star City, WV

    Google Scholar 

  4. Jefimenko O.D. (1999). J. Phys. A: Math. Gen 32: 3755

    Article  MATH  MathSciNet  ADS  Google Scholar 

  5. Ivezić T. (1999). Found Phys. Lett. 12: 507

    Article  MathSciNet  Google Scholar 

  6. Ivezić T. (2001). Found. Phys. 31:1139

    Article  MathSciNet  Google Scholar 

  7. T. Ivezić, Found. Phys. Lett. 15, 27 (2002); physics/0103026; physics/0101091.

  8. Ivezić T. (2003). Found. Phys. 33:1339

    Article  MathSciNet  Google Scholar 

  9. Ivezić T., hep-th/0207250; hep-ph/0205277.

  10. Ivezić T. (2005). Found. Phys. Lett. 18:301

    Article  Google Scholar 

  11. Ivezić T. (2005). Found. Phys. 35:1585

    Article  MathSciNet  Google Scholar 

  12. Ivezić T. (2005). Found. Phys. Lett. 18: 401

    Article  MathSciNet  Google Scholar 

  13. Ivezić T., physics/0505013.

  14. Ivezić T. (1999). Found. Phys. Lett. 12:105

    Article  MathSciNet  Google Scholar 

  15. D. Hestenes, Space-Time Algebra(Gordon & Breach, New York, 1966); Space-Time Calculus; available at: http://modelingnts.la. asu.edu/evolution. html; New Foundations for Classical Mechanics, 2nd edn. (Kluwer Academic, Dordrecht, 1999); Am. J Phys. 71, 691 (2003).

  16. Doran C., Lasenby A. (2003). Geometric algebra for physicists. Cambridge University, Cambridge

    MATH  Google Scholar 

  17. A. Einstein, Ann. Physik 17, 891 (1905), translated by W. Perrett and G. B. Jeffery, The Principle of Relativity (Dover, New York, 1952).

  18. Rohrlich F. (1966). Nuovo Cimento B 45: 76

    MATH  Google Scholar 

  19. Gamba A. (1967). Am. J. Phys. 35: 83

    Article  Google Scholar 

  20. R. M. Wald, General Relativity (Chicago University, Chicago, 1984); M. Ludvigsen, General Relativity, A Geometric Approach (Cambridge University, Cambridge, 1999); S. Sonego and M. A. Abramowicz, J. Math. Phys. 39, 3158 (1998); D.A. T. Vanzella, G. E. A. Matsas, H. W. Crater, Am. J. Phys. 64, 1075 (1996).

  21. Hestenes D., Sobczyk G. (1984). Clifford Algebra to Geometric Calculus. Reidel, Dordrecht

    MATH  Google Scholar 

  22. A. Einstein, Ann. Physik 49, 769 (1916), translatted by W. Perrett and G. B. Jeffery, The Principle of Relativity (Dover, New York, 1952).

  23. Rosser W.G.W. (1968). Classical Electromagnetism via Relativity. Plenum, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomislav Ivezić.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivezić, T. Four-Dimensional Geometric Quantities versus the Usual Three-Dimensional Quantities: The Resolution of Jackson’s Paradox. Found Phys 36, 1511–1534 (2006). https://doi.org/10.1007/s10701-006-9071-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-006-9071-y

Keywords

Navigation