Skip to main content
Log in

Tools, Objects, and Chimeras: Connes on the Role of Hyperreals in Mathematics

  • Published:
Foundations of Science Aims and scope Submit manuscript

Abstract

We examine some of Connes’ criticisms of Robinson’s infinitesimals starting in 1995. Connes sought to exploit the Solovay model \({\mathcal{S}}\) as ammunition against non-standard analysis, but the model tends to boomerang, undercutting Connes’ own earlier work in functional analysis. Connes described the hyperreals as both a “virtual theory” and a “chimera”, yet acknowledged that his argument relies on the transfer principle. We analyze Connes’ “dart-throwing” thought experiment, but reach an opposite conclusion. In \({\mathcal{S}}\), all definable sets of reals are Lebesgue measurable, suggesting that Connes views a theory as being “virtual” if it is not definable in a suitable model of ZFC. If so, Connes’ claim that a theory of the hyperreals is “virtual” is refuted by the existence of a definable model of the hyperreal field due to Kanovei and Shelah. Free ultrafilters aren’t definable, yet Connes exploited such ultrafilters both in his own earlier work on the classification of factors in the 1970s and 80s, and in Noncommutative Geometry, raising the question whether the latter may not be vulnerable to Connes’ criticism of virtuality. We analyze the philosophical underpinnings of Connes’ argument based on Gödel’s incompleteness theorem, and detect an apparent circularity in Connes’ logic. We document the reliance on non-constructive foundational material, and specifically on the Dixmier trace \({-\hskip-9pt\int}\) (featured on the front cover of Connes’ magnum opus) and the Hahn–Banach theorem, in Connes’ own framework. We also note an inaccuracy in Machover’s critique of infinitesimal-based pedagogy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albeverio, S., Høegh-Krohn, R., Fenstad, J., & Lindstrøm, T. (1986) Nonstandard methods in stochastic analysis and mathematical physics. (Pure and Applied Mathematics, Vol. 122). Orlando, FL: Academic Press, Inc.

  • Atiyah M. (2006) The interface between mathematics and physics: A panel discussion sponsored by the DIT & the RIA. Irish Mathematical Society Bulletin 58: 33–54

    Google Scholar 

  • Barner, K. (2011). Fermats “adaequare”—und kein Ende? Mathematische Semesterberichte, 58(1), 13–45. See http://www.springerlink.com/content/5r32u25207611m37/

  • Bell J. L., Machover M. (1977) A course in mathematical logic. North-Holland Publishing Co., Amsterdam–New York–Oxford

    Google Scholar 

  • Bell J., Slomson A. (1969) Models and ultraproducts: An introduction. North-Holland Publishing Co., Amsterdam-London

    Google Scholar 

  • Benci, V., Horsten, L., & Wenmackers, S. (2011) Non-archimedean probability. Milan Journal of Mathematics, to appear. See http://arxiv.org/abs/1106.1524.

  • Bishop E. (1977) Review: H. Jerome Keisler, elementary calculus. Bulletin of the American Mathematical Society 83: 205–208

    Article  Google Scholar 

  • Blass A., Laflamme C. (1989) Consistency results about filters and the number of inequivalent growth types. Journal of Symbolic Logic 54(1): 50–56

    Article  Google Scholar 

  • Błaszczyk, P., Katz, M., & Sherry, D. (2012). Ten misconceptions from the history of analysis and their debunking. Foundations of Science (online first). See doi:10.1007/s10699-012-9285-8 and http://arxiv.org/abs/1202.4153.

  • Borovik, A., Jin, R., & Katz, M. (2012). An integer construction of infinitesimals: Toward a theory of Eudoxus hyperreals. Notre Dame Journal of Formal Logic, 53(4), 557–570. http://arxiv.org/abs/1210.7475.

    Google Scholar 

  • Borovik A., & Katz M. (2012). Who gave you the Cauchy–Weierstrass tale? The dual history of rigorous calculus. Foundations of Science, 17(3), 245–276. See doi:10.1007/s10699-011-9235-x and http://arxiv.org/abs/1108.2885.

  • Bråting K. (2007) A new look at E. G. Björling and the Cauchy sum theorem. Archive for History of Exact Sciences 61(5): 519–535

    Article  Google Scholar 

  • Breger H. (1994) The mysteries of adaequare: A vindication of Fermat. Archive for History of Exact Sciences 46(3): 193–219

    Article  Google Scholar 

  • Breuillard, E., Green, B., & Tao, T. (2011) The structure of approximate groups, Publications Mathématiques. Institut de Hautes études Scientifiques, to appear. See http://arxiv.org/abs/1110.5008

  • Brukner, Č., & Zeilinger A. (2005). Quantum physics as a science of information, in Quo vadis quantum mechanics?. In Frontiers Collection (pp. 47–61). Berlin: Springer.

  • Cantor, G. (1932). Foundations of a general theory of manifolds. (Grundlagen einer allgemeinen Mannigfaltigkeitslehre.) Leipzig. Teubner, 1883, 47 S. Reproduced in Georg Cantor, Gesammelte Abhandlungen, (pp. 165–209) Berlin: Springer.

  • Carey A., Phillips J., Sukochev F. (2003) Spectral flow and Dixmier traces. Advances in Mathematics 173(1): 68–113

    Article  Google Scholar 

  • Cassirer E. (1957) The philosophy of symbolic forms. Yale University Press, New Haven and London

    Google Scholar 

  • Chang C. C., Keisler H. J. (1992) Model Theory (3rd ed.). North Holland, Amsterdam

    Google Scholar 

  • Choquet G. (1968) Deux classes remarquables d’ultrafiltres sur \({\mathbb{N}}\). Bulletin des Sciences Mathématiques (2) 92: 143–153

    Google Scholar 

  • Christensen, J. (1974). Topology and Borel structure. Descriptive topology and set theory with applications to functional analysis and measure theory. (North-Holland Mathematics Studies, Vol. 10). (Notas de Matemática, No. 51). North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York.

  • Cifoletti, G. (1990). La méthode de Fermat: son statut et sa diffusion. Algèbre et comparaison de figures dans l’histoire de la méthode de Fermat. In: Cahiers d’Histoire et de Philosophie des Sciences. Nouvelle Série 33. Paris:Société Française d’Histoire des Sciences et des Techniques.

  • Connes, A. (1969/70) Ultrapuissances et applications dans le cadre de l’analyse non standard. 1970 Séminaire Choquet: 1969/70, Initiation à à l’Analyse Fasc. 1, Exp. 8, 25 pp. Paris: Secrétariat mathématique.

  • Connes A. (1970) Détermination de modèles minimaux en analyse non standard et application. Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences. Séries A et B 271: A969–A971

    Google Scholar 

  • Connes A. (1976) Classification of injective factors Cases. II 1, II , III λ, λ ≠ 1. Annals of Mathematics (2) 104(1): 73–115

    Article  Google Scholar 

  • Connes, A. (1990). Essay on physics and noncommutative geometry. The interface of mathematics and particle physics (Oxford, 1988). In: The Institute of Mathematics and its Applications Conference Series. New Series 24 (pp. 9–48). New York: Oxford University Press.

  • Connes A. (1994) Noncommutative geometry. Academic Press, Inc, San Diego, CA

    Google Scholar 

  • Connes A. (1995) Noncommutative geometry and reality. Journal of Mathematical Physics 36(11): 6194–6231

    Article  Google Scholar 

  • Connes A. (1997) Brisure de symétrie spontanée et géométrie du point de vue spectral. [Spontaneous symmetry breaking and geometry from the spectral point of view]. Journal of Geometry and Physics 23(3-4): 206–234

    Article  Google Scholar 

  • Connes, A. (2000a). Noncommutative geometry–year 2000. GAFA 2000 (Tel Aviv, 1999). Geometric and Functional Analysis 2000, Special Volume, Part II, pp. 481–559.

  • Connes, A. (2000b). Noncommutative geometry year 2000. Preprint (2000), see http://arxiv.org/abs/math/0011193.

  • Connes A. (2000c) A short survey of noncommutative geometry. Journal of Mathematical Physics 41(6): 3832–3866

    Article  Google Scholar 

  • Connes A. (2000d) Interview: la réalité mathématique archaï que. La Recherche, 2000. See http://www.larecherche.fr/content/recherche/article?id=14272.

  • Connes, A. (2004). Cyclic cohomology, noncommutative geometry and quantum group symmetries. In item (Connes et al. 2004), (pp. 1–71).

  • Connes, A. (2007). An interview with Alain Connes. Part I: conducted by Catherine Goldstein and Georges Skandalis (Paris). European Mathematical Society. Newsletter 63, 25–30. See http://www.ems-ph.org/journals/newsletter/pdf/2007-03-63.pdf.

  • Connes, A. (2007). Non-standard stuff. Blog. See http://noncommutativegeometry.blogspot.com/2007/07/non-standard-stuff.html.

  • Connes, A. (2009). Private communication. January 12, 2009

  • Connes, A. (2012a). Private communication. June 17, 2012

  • Connes A. (2012b) Private communication. July 2, 2012

  • Connes, A., Cuntz, J., Guentner, E., Higson, N., Kaminker, J., & Roberts, J. (2004). Noncommutative geometry. Lectures given at the C.I.M.E. Summer School held in Martina Franca, September 3–9, 2000. In S. Doplicher & R. Longo (Eds.), Lecture Notes in Mathematics, 1831. Springer-Verlag, Berlin: Centro Internazionale Matematico Estivo (C.I.M.E.), Florence.

  • Connes, A., Lichnerowicz, A., & Schützenberger M. (2001) Triangle of thoughts. (Translated from the 2000 French original by Jennifer Gage). Providence, RI: American Mathematical Society.

  • Corfield D. (2003) Towards a philosophy of real mathematics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Cutland N., Kessler C., Kopp E., Ross D. (1988) On Cauchy’s notion of infinitesimal. The British Journal for the Philosophy of Science 39(3): 375–378

    Article  Google Scholar 

  • Davies E. B. (2011) Towards a philosophy of real mathematics (book review of item Corfield 2003). Notices of the American Mathematical Society 58(10): 1454–1457

    Google Scholar 

  • Davis, M. (1977). Applied nonstandard analysis. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1977. Reprinted: Dover, NY, 2005, see http://store.doverpublications.com/0486442292.html.

  • Davis M. (2006) The incompleteness theorem. Notices of the American Mathematical Society 53(4): 414–418

    Google Scholar 

  • Davis, M. (2012a), Pragmatic Platonism. Preprint.

  • Davis, M. (2012b). Private communication. July 1, 2012.

  • Dennett D. (1991) Real patterns. Journal of Philosophy 88(1): 27–51

    Article  Google Scholar 

  • Dieks, D. (2002). MathSciNet review of item (Connes et al. 2001). See http://www.ams.org/mathscinet-getitem?mr=1861272

  • Dixmier J. (1966) Existence de traces non normales. Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences. Séries A et B 262: A1107–A1108

    Google Scholar 

  • Durham, I. (2011) In search of continuity: thoughts of an epistemic empiricist. See http://arxiv.org/abs/1106.1124

  • Earman J. (1975) Infinities, infinitesimals, and indivisibles: the Leibnizian labyrinth. Studia Leibnitiana 7(2): 236–251

    Google Scholar 

  • Ehrlich P. (2006) The rise of non-Archimedean mathematics and the roots of a misconception. I. The emergence of non-Archimedean systems of magnitudes. Archive for History of Exact Sciences 60(1): 1–121

    Article  Google Scholar 

  • Ehrlich P. (2012) The absolute arithmetic continuum and the unification of all numbers great and small. Bulletin of Symbolic Logic 18(1): 1–45

    Article  Google Scholar 

  • Engliš M., Zhang G. (2010) Hankel operators and the Dixmier trace on strictly pseudoconvex domains. Documenta Mathematica 15: 601–622

    Google Scholar 

  • Erdös P., Gillman L., Henriksen M. (1955) An isomorphism theorem for real-closed fields. The Annals of Mathematics (2) 61: 542–554

    Article  Google Scholar 

  • Fahey C., Lenard C., Mills T., Milne L. (2009) Calculus: A Marxist approach. The Australian Mathematical Society Gazette 36(4): 258–265

    Google Scholar 

  • Farah I., Shelah S. (2010) A dichotomy for the number of ultrapowers. Journal of Mathematical Logic 10(1-2): 45–81

    Article  Google Scholar 

  • Foreman M., Wehrung F. (1991) The Hahn–Banach theorem implies the existence of a non-Lebesgue measurable set. Fundamenta Mathematicae 138(1): 13–19

    Google Scholar 

  • Fraenkel, A. (1946). Einleitung in die Mengenlehre. Dover Publications, New York, NY, [originally published by Springer, Berlin, 1928].

  • Fraenkel A. (1967) Lebenskreise. Aus den Erinnerungen eines jüdischen Mathematikers. Deutsche Verlags-Anstalt, Stuttgart

    Google Scholar 

  • Gayral, V., Iochum, B., & Sukochev, F. (2012). (Org.): Traces Singulières et leurs Applications du 02/01/2012 au 06/01/2012. CIRM, Marseille. See http://www.cirm.univ-mrs.fr/index.html/spip.php?rubrique2&EX=info_rencontre&annee=2012&id_renc=704&lang=en.

  • Gierz G., Hofmann K., Keimel K., Lawson J., Mislove M., Scott D. (2003) Continuous lattices and domains. Encyclopedia of Mathematics and its applications. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Gödel, K. (1940). The consistency of the axiom of choice and of the continuum hypothesis with the axioms of set theory. In: Annals of Mathematics Studies (Vol. 3, pp. 66) Princeton: Princeton University Press.

  • Goldblatt, R. (1998). Lectures on the hyperreals. An introduction to nonstandard analysis. Graduate Texts in Mathematics (Vol. 188) New York: Springer-Verlag

  • Goldbring I. (2010) Hilbert’s fifth problem for local groups. Annals of Mathematics (2) 172(2): 1269–1314

    Article  Google Scholar 

  • Goldenbaum, U., Jesseph, D. (Eds.) (2008) Infinitesimal differences: Controversies between Leibniz and his contemporaries. Walter de Gruyter, Berlin-New York

    Google Scholar 

  • Goodstein R. (1944) On the restricted ordinal theorem. Journal of Symbolic Logic 9: 33–41

    Article  Google Scholar 

  • Grabiner J. (1981) The origins of Cauchy’s rigorous calculus. MIT Press, Cambridge, Mass-London

    Google Scholar 

  • Hacking, I. (2013). The mathematical animal: philosophical thoughts about proofs, applications, and other mathematical activities. Cambridge University Press, (forthcoming).

  • Halmos P. (1985) I want to be a mathematician. An automathography. Springer-Verlag, New York

    Book  Google Scholar 

  • Hamkins, J. (2012a). Is the dream solution of the continuum hypothesis attainable? See http://arxiv.org/abs/1203.4026.

  • Hamkins, J. (2012b). The set-theoretic multiverse. The Review of Symbolic Logic, 5: 416–449. See doi:10.1017/S1755020311000359.

    Google Scholar 

  • Hersh, R. (1997). What is mathematics, really? New York: Oxford University Press.

  • Herzberg F. (2007) Internal laws of probability, generalized likelihoods and Lewis’ infinitesimal chances–a response to Adam Elga. The British Journal for the Philosophy of Science 58(1): 25–43

    Article  Google Scholar 

  • Hirschfeld J. (1990) The nonstandard treatment of Hilbert’s fifth problem. Transactions of the American Mathematical Society 321(1): 379–400

    Google Scholar 

  • Hörmander L. (1976) Linear partial differential operators. Springer Verlag, Berlin-New York

    Google Scholar 

  • Hrbáček K. (1978) Axiomatic foundations for nonstandard analysis. Fundamenta Mathematicae 98(1): 1–19

    Google Scholar 

  • Hrushovski E. (1996) The Mordell-Lang conjecture for function fields. Journal of the American Mathematical Society 9(3): 667–690

    Article  Google Scholar 

  • Hrushovski E. (2012) Stable group theory and approximate subgroups. Journal of the American Mathematical Society 25: 189–243

    Article  Google Scholar 

  • Isaacson D. (2011) The reality of mathematics and the case of set theory. In: Novák Z., Simonyi A. (Eds.) Truth, reference and realism. Central European University Press, Budapest, pp 1–76

    Google Scholar 

  • Ishiguro H. (1990) Leibniz’s philosophy of logic and language (2nd ed.). Cambridge University Press, Cambridge

    Google Scholar 

  • Jesseph, D. (2012). Leibniz on the Elimination of infinitesimals: Strategies for finding truth in fiction. In N. B. Goethe, P. Beeley & D. Rabouin (Eds.), To appear in Leibniz on the interrelations between mathematics and philosophy, (Archimedes Series, 27 pages). Springer Verlag

  • Kalton N., Sedaev A., Sukochev F. (2011) Fully symmetric functionals on a Marcinkiewicz space are Dixmier traces. Advances in Mathematics 226(4): 3540–3549

    Article  Google Scholar 

  • Kanovei V. (1980) The set of all analytically definable sets of natural numbers can be defined analytically. Mathematics of the USSR, Izvestija 15: 469–500

    Article  Google Scholar 

  • Kanovei V. (1991) Undecidable hypotheses in Edward Nelson’s Internal Set Theory. Russian Mathematical Surveys 46(6): 1–54

    Article  Google Scholar 

  • Kanovei, V., & Reeken, M. (2004). Nonstandard analysis, axiomatically. Springer Monographs in Mathematics. Berlin: Springer, xvi+408 pp.

  • Kanovei V., Shelah S. (2004) A definable nonstandard model of the reals. Journal of Symbolic Logic 69(1): 159–164

    Article  Google Scholar 

  • Kanovei V., Uspensky V. (2006) Uniqueness of nonstandard extensions. Moscow University Mathematics Bulletin 61(5): 1–8

    Google Scholar 

  • Kantor I. (1972) Certain generalizations of Jordan algebras. Trudy Seminara po Vektornomu i Tenzornomu Analizu s ikh Prilozheniyami k Geometrii, Mekhanike i Fizike 16: 407–499

    Google Scholar 

  • Katz, K., & Katz, M. (2011a). Cauchy’s continuum. Perspectives on Science, 19(4), 426-452. See http://arxiv.org/abs/1108.4201 and http://www.mitpressjournals.org/doi/abs/10.1162/POSC_a_00047.

  • Katz, K., & Katz, M. (2011b). Meaning in classical mathematics: is it at odds with Intuitionism? Intellectica, 56(2), 223–302. See http://arxiv.org/abs/1110.5456.

  • Katz, K., & Katz, M. (2012a). Stevin numbers and reality. Foundations of Science, 17(2), 109–123. See http://arxiv.org/abs/1107.3688 and doi:10.1007/s10699-011-9228-9.

  • Katz, K., & Katz, M. (2012b). A Burgessian critique of nominalistic tendencies in contemporary mathematics and its historiography. Foundations of Science, 17(1), 51–89. See doi:10.1007/s10699-011-9223-1 and http://arxiv.org/abs/1104.0375.

  • Katz, M. (1995). A proof via the Seiberg-Witten moduli space of Donaldson’s theorem on smooth 4 -manifolds with definite intersection forms. R.C.P. 25, Vol. 47 (Strasbourg, 1993–1995), 269–274, Prépubl. Inst. Rech. Math. Av., 1995/24, Univ. Louis Pasteur, Strasbourg, See http://arxiv.org/abs/1207.6271.

  • Katz, M., Leichtnam, E. (2013). Commuting and non-commuting infinitesimals. American Mathematical Monthly (to appear).

  • Katz, M., Schaps, D., & Shnider, S. (2013). Almost equal: The method of adequality from diophantus to fermat and beyond. Perspectives on Science 21(3), (to appear). http://arxiv.org/abs/1210.7750.

  • Katz, M., & Sherry, D. (2012a) Leibniz’s infinitesimals: Their fictionality, their modern implementations, and their foes from Berkeley to Russell and beyond. Erkenntnis (online first), see doi:10.1007/s10670-012-9370-y and http://arxiv.org/abs/1205.0174.

  • Katz, M., & Sherry, D. (2012b). Leibniz’s laws of continuity and homogeneity. Notices of the American Mathematical Society, 59(11), (to appear)

  • Kawai, T. (1983) Nonstandard analysis by axiomatic methods. In: Southeast Asia Conference on Logic, Singapore 1981, Studies in Logic and Foundations of Mathematics (Vol. 111, pp. 55–76). North Holland.

  • Keisler H.J. (1986) Elementary calculus: An infinitesimal approach. (2nd ed.). Boston: Prindle, Weber & Schimidt See http://www.math.wisc.edu/~keisler/calc.html

  • Keisler H. J. (1994) The hyperreal line. In: Ehrlich P. (Ed.) Real numbers generalizations of reals, and theories of continua. Kluwer Academic Publishers, Dordrecht, pp 207–237

    Chapter  Google Scholar 

  • Klein, F. (1908) Elementary Mathematics from an Advanced Standpoint. Vol. I. Arithmetic, Algebra, Analysis. Translation by E. R. Hedrick and C. A. Noble [Macmillan, New York, 1932] from the third German edition [Springer, Berlin, 1924]. Originally published as Elementarmathematik vom höheren Standpunkte aus (Leipzig, 1908).

  • Kunen, K. (1980). Set theory. An introduction to independence proofs. Studies in Logic and the Foundations of Mathematics (Vol. 102). Amsterdam-New York: North-Holland Publishing Co.

  • Lakoff G., Núñez R. (2000) Where mathematics comes from. How the embodied mind brings mathematics into being. Basic Books, New York

    Google Scholar 

  • Larson P. (2009) The filter dichotomy and medial limits. Journal of Mathematical Logic 9(2): 159–165

    Article  Google Scholar 

  • Levey, S. (2008). Archimedes, Infinitesimals and the Law of Continuity: On Leibniz’s Fictionalism. In: Goldenbaum et al. [68], pp. 107–134.

  • Lord, S., & Sukochev, F. (2010) Measure theory in noncommutative spaces. SIGMA Symmetry Integrability Geom. Methods Appl. 6(Paper 072):36

    Google Scholar 

  • Lord S., Sukochev F. (2011) Noncommutative residues and a characterisation of the noncommutative integral. Proceedings of the American Mathematical Society 139(1): 243–257

    Article  Google Scholar 

  • Lord S., Potapov D., Sukochev F. (2010) Measures from Dixmier traces and zeta functions. Journal of Functional Analysis 259(8): 1915–1949

    Article  Google Scholar 

  • Łoś, J. (1955). Quelques remarques, thérèmes et problèmes sur les classes définissables d’algèbres. In Mathematical interpretation of formal systems (pp. 98–113). Amsterdam: North-Holland Publishing Co.

  • Luxemburg, W. (1964). Nonstandard analysis. Lectures on A. Robinson’s Theory of infinitesimals and infinitely large numbers, Second corrected ed. Pasadena: Mathematics Department, California Institute of Technology.

  • Luxemburg, W. (1963). Addendum to “On the measurability of a function which occurs in a paper by A. C. Zaanen”. Nederl. Akad. Wetensch. Proceedings of Series A 66 Koninklijke Nederlandse Akademie van Wetenschappen. Indagationes Mathematicae, 25, 587–590.

  • Luxemburg, W. (1973). What is nonstandard analysis? Papers in the foundations of mathematics. American Mathematical Monthly 80(6), part II, 38–67.

    Google Scholar 

  • Machover M. (1993) The place of nonstandard analysis in mathematics and in mathematics teaching. The British Journal for the Philosophy of Science 44(2): 205–212

    Article  Google Scholar 

  • Mac Lane S. (1986) Mathematics, form and function. Springer-Verlag, New York

    Book  Google Scholar 

  • Margenau, H. (1935). Methodology of Physics, 2 parts. Philosophy of Physics, 2, 48–72, 164–187.

  • Margenau H. (1950) The nature of physical reality. A philosophy of modern physics. McGraw-Hill Book Co., Inc, New York, NY

    Google Scholar 

  • Marquis J.-P. (1997) Abstract mathematical tools and machines for mathematics. Philosophia Mathematica. Series III 5(3): 250–272

    Article  Google Scholar 

  • Marquis, J.-P. (2006). A path to the epistemology of mathematics: homotopy theory. In The architecture of modern mathematics (pp. 239–260). Oxford: Oxford University Press

  • Meyer, P. (1973). Limites médiales, d’après mokobodzki, séminaire de probabilités, VII (Univ. Strasbourg, année universitaire 1971–1972) Lecture Notes in Mathematics (Vol. 321, pp. 198–204) Berlin: Springer.

  • Mokobodzki, G. (1967/68). Ultrafiltres rapides sur N. Construction d’une densité relative de deux potentiels comparables. 1969 Séminaire de Théorie du Potentiel, dirigé par M. Brelot, G. Choquet et J. Deny: 1967/68, Exp. 12, 22 pp. Secrétariat mathématique, Paris.

  • Morley M., Vaught R. (1962) Homogeneous universal models. Mathematica Scandinavica 11: 37–57

    Google Scholar 

  • Nelson E. (1977) Internal set theory: A new approach to nonstandard analysis. Bulletin of the American Mathematical Society 83(6): 1165–1198

    Article  Google Scholar 

  • Otte, M. (1994). Das Formale, das Soziale, und das Subjektive. Eine Einführung in die Philosophie und Didaktik der Mathematik. Frankfurt/Main: Suhrkamp Verlag.

  • Novikov P. S. (1963) On the consistency of some propositions of the descriptive theory of sets. American Mathematical Society Translations (2) 29: 51–89

    Google Scholar 

  • Pawlikowski J. (1991) The Hahn–Banach theorem implies the Banach–Tarski paradox. Fundamenta Mathematicae 138(1): 21–22

    Google Scholar 

  • Proietti C. (2008) Natural numbers and infinitesimals: A discussion between Benno Kerry and Georg Cantor. History and Philosophy of Logic 29(4): 343–359

    Article  Google Scholar 

  • Raussen M., Skau C. (2010) Interview with Mikhail Gromov. Notices of the American Mathematical Society 57(3): 391–403

    Google Scholar 

  • Resnik M. (1994) Mathematics as a Science of Patterns. Oxford University Press, Oxford

    Google Scholar 

  • Robinson A. (1966) Non-standard analysis. North-Holland Publishing Co, Amsterdam

    Google Scholar 

  • Rudin, W. (1956). Homogeneity problems in the theory of Čech compactifications. Duke Mathematical Journal, 23, 409–419 and 633.

    Google Scholar 

  • Russell B. (1903) The principles of mathematics. Cambridge University Press, Cambridge

    Google Scholar 

  • Scott, D. (1961). On constructing models for arithmetic. 1961 Infinitistic Methods (Proceedings of symposium Foundations of Mathematics, Warsaw, 1959) (pp. 235–255). Pergamon, Oxford; Państwowe Wydawnictwo Naukowe, Warsaw.

  • Shapiro S. (1997) Philosophy of mathematics. Structure and ontology. Oxford University Press, New York

    Google Scholar 

  • Shelah, S. (1982). Proper forcing. Lecture Notes in Mathematics (Vol. 940). Berlin-New York: Springer-Verlag.

  • Shelah S. (1984) Can you take Solovay’s inaccessible away?. Israel Journal of Mathematics 48(1): 1–47

    Article  Google Scholar 

  • Sierpiński, W. (1934). Hypothèse du Continu, Monografje Matematyczne, Tome 4, Warszawa-Lwow, Subwencji Funduszu Kultur. Narodowej, v+192 pp. [2nd edition: Chesea, 1956.

  • Sinaceur H. (1973) Cauchy et Bolzano. Revue d’Histoire des Sciences et de leurs Applications 26(2): 97–112

    Article  Google Scholar 

  • Skolem T. (1933). Norsk Matematisk Forenings Skrifter II. Series 1/12: 73–82

    Google Scholar 

  • Skolem T. (1934). Fundamenta Mathematicae 23: 150–161

    Google Scholar 

  • Skolem, T. (1955). Peano’s axioms and models of arithmetic. In Mathematical interpretation of formal systems (pp. 1–14). Amsterdam: North-Holland Publishing Co.

  • Solovay R. (1970) A model of set-theory in which every set of reals is Lebesgue measurable. Annals of Mathematics (2) 92: 1–56

    Article  Google Scholar 

  • Stern J. (1985) Le problème de la mesure. Seminar Bourbaki. Astérisque 1983: 325–346

    Google Scholar 

  • Stillwell J. (1977) Concise survey of mathematical logic. Australian Mathematical Society. Journal. Series A. Pure Mathematics and Statistics 24(2): 139–161

    Article  Google Scholar 

  • Stroyan, K., & Luxemburg, W. (1976). Introduction to the theory of infinitesimals. Pure and Applied Mathematics, No. 72. New York-London: Academic Press [Harcourt Brace Jovanovich, Publishers]

  • Sukochev F., Zanin D. (2011) ζ-function and heat kernel formulae. Journal of Functional Analysis 260(8): 2451–2482

    Article  Google Scholar 

  • Sukochev, F. & Zanin, D. (2011b). Traces on symmetrically normed operator ideals. See http://arxiv.org/abs/1108.2598.

  • Tao T. (2008) Structure and randomness. Pages from year one of a mathematical blog. American Mathematical Society, Providence, RI

    Google Scholar 

  • van den Berg, I., Neves, V. (Eds.) (2007) The strength of nonstandard analysis. Springer, Wien, NewYork, Vienna

    Google Scholar 

  • Wenmackers, S., & Horsten, L. (2012). Fair infinite lotteries. Synthese See doi:10.1007/s11229-010-9836-x.

  • Wheeler J. (1994) At home in the universe. Masters of modern physics. American Institute of Physics, Woodbury, NY

    Google Scholar 

  • Wilson M. (1992) Frege: The royal road from geometry. Nous 26: 149–180

    Article  Google Scholar 

  • Zelmanov E. (2008) On Isaiah Kantor (1936–2006). Journal of Generalized Lie Theory and Applications 2(3): 111

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail G. Katz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kanovei, V., Katz, M.G. & Mormann, T. Tools, Objects, and Chimeras: Connes on the Role of Hyperreals in Mathematics. Found Sci 18, 259–296 (2013). https://doi.org/10.1007/s10699-012-9316-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10699-012-9316-5

Keywords

Mathematics Subject Classification (2000)

Navigation