Skip to main content
Log in

Who Gave You the Cauchy–Weierstrass Tale? The Dual History of Rigorous Calculus

  • Published:
Foundations of Science Aims and scope Submit manuscript

Abstract

Cauchy’s contribution to the foundations of analysis is often viewed through the lens of developments that occurred some decades later, namely the formalisation of analysis on the basis of the epsilon-delta doctrine in the context of an Archimedean continuum. What does one see if one refrains from viewing Cauchy as if he had read Weierstrass already? One sees, with Felix Klein, a parallel thread for the development of analysis, in the context of an infinitesimal-enriched continuum. One sees, with Emile Borel, the seeds of the theory of rates of growth of functions as developed by Paul du Bois-Reymond. One sees, with E. G. Björling, an infinitesimal definition of the criterion of uniform convergence. Cauchy’s foundational stance is hereby reconsidered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Anderson, M., Katz, V., Wilson, R. (eds) (2009) Who gave you the epsilon? & Other tales of mathematical history. The Mathematical Association of America, USA

    Google Scholar 

  • Arkeryd L. (1981) Intermolecular forces of infinite range and the Boltzmann equation. Archive for Rational Mechanics and Analysis 77(1): 11–21

    Article  Google Scholar 

  • Arkeryd L. (2005) Nonstandard analysis. American Mathematical Monthly 112(10): 926–928

    Article  Google Scholar 

  • Artin, E., & Schreier, O. (1926). Algebraische Konstruktion reeller Körper. Abhandlungen aus dem Mathematischen Seminar der Hamburgischen Univeristät, Leipzig 5, pp. 85–99. In S. Lang & J. T. Tate (Eds.), The collected papers of Emil Artin. Reeding, MA: Addison-Wesley, 1965, pp. 258–272.

  • Bishop, E. (1975). The crisis in contemporary mathematics. In Proceedings of the American Academy workshop on the evolution of modern mathematics (Boston, Mass., 1974), Historia Math. (Vol. 2, no. 4, pp. 507–517).

  • Bishop, E. (1985). Schizophrenia in contemporary mathematics. In Errett Bishop: Reflections on him and his research (San Diego, Calif., 1983) (pp. 1–32), Contemp. Math., Vol. 39, Am. Math. Soc., Providence, RI (published posthumously; originally distributed in 1973).

  • Björling E. G. (1852) Sur une classe remarquable des séries infinies. JMPA 17(1): 454–472

    Google Scholar 

  • Björling, E. G. (1852). Om det Cauchyska kriteriet påde fall, dåfunctioner af en variabel låta utveckla sig i serie, fortgående efter de stigande digniteterna af variabeln. Kongl. Vetens. Akad. Förh. Stockholm series, Vol. 1b, pp. 166–228

  • Błaszczyk, P. (2009). Nonstandard analysis from a philosophical point of view. In Non-classical mathematics (pp. 21–24). Hejnice, 18–22 June 2009.

  • Borel E. (1902) Leçons sur les séries à termes positifs, ed. Robert d’Adhemar, Paris (Gauthier-Villars)

    Google Scholar 

  • Bos H. J. M. (1974) Differentials, higher-order differentials and the derivative in the Leibnizian calculus. Archive for History of Exact Sciences 14: 1–90

    Article  Google Scholar 

  • Boyer C. (1949) The concepts of the calculus. Hafner Publishing Company, New York

    Google Scholar 

  • Boyer, C. (1959). The history of the calculus and its conceptual development. New York: Dover Publications Inc.

    Google Scholar 

  • Bradley, R., & Sandifer, C. (2009). Cauchy’s cours d’analyse. An annotated translation. Sources and Studies in the History of Mathematics and Physical Sciences. Berlin: Springer.

  • Bråting K. (2007) A new look at E. G. Björling and the Cauchy sum theorem. Archive for History of Exact Sciences 61(5): 519–535

    Article  Google Scholar 

  • Brillouët-Belluot, N. Review of Felscher (2000) for MathSciNet. Online at http://www.ams.org/mathscinet-getitem?mr=1792418.

  • Cauchy, A. L. (1821). Cours d’Analyse de L’Ecole Royale Polytechnique. Première Partie. Analyse algébrique. Paris: Imprimérie Royale. Online at http://books.google.com/books?id=_mYVAAAAQAAJ&dq=cauchy&lr=&source=gbs_navlinks_s.

  • Cauchy A. L. (1823) Résumé des Leçons données à l’Ecole Royale Polytechnique sur le Calcul Infinitésimal. Imprimérie Royale, Paris

    Google Scholar 

  • Cauchy A. L. (1826) Leo̧ns sur les applications du calcul infinitésimal à la géométrie. Imprimérie Royale, Paris

    Google Scholar 

  • Cauchy, A. L. (1829). Leçons sur le calcul différentiel. Paris: Debures. In Oeuvres complètes, Series 2 (Vol. 4, pp. 263–609). Paris: Gauthier-Villars, 1899.

  • Cauchy, A. L. (1853). Note sur les séries convergentes dont les divers termes sont des fonctions continues d’une variable réelle ou imaginaire, entre des limites données. In Oeuvres complètes, Series 1 (Vol. 12, pp. 30–36). Paris: Gauthier–Villars, 1900.

  • Chwistek L. (1948) The limits of science. Kegan Paul, London

    Google Scholar 

  • Cleave J. (1979) The concept of “variable” in nineteenth century analysis. The British Journal for the Philosophy of Science 30(3): 266–278

    Article  Google Scholar 

  • Cooke, R. L. (1980) Review of Medvedev (1987) for MathSciNet, see http://www.ams.org/mathscinet-getitem?mr=923796.

  • Cutland N., Kessler C., Kopp E., Ross D. (1988) On Cauchy’s notion of infinitesimal. The British Journal for the Philosophy of Science 39(3): 375–378

    Article  Google Scholar 

  • Dauben J. (1995) Abraham Robinson. The creation of nonstandard analysis. A personal and mathematical odyssey. With a foreword by Benoit B. Mandelbrot. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Dauben, J. (1996). Arguments, logic and proof: Mathematics, logic and the infinite. History of mathematics and education: Ideas and experiences (Essen, 1992) (pp. 113–148), Stud. Wiss. Soz. Bildungsgesch. Math., Vol. 11. Göttingen: Vandenhoeck & Ruprecht.

  • Davis, M. (1977). Applied nonstandard analysis. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney. Reprinted by Dover, NY, 2005, see http://store.doverpublications.com/0486442292.html.

  • Dossena R., Magnani L. (2007) Mathematics through diagrams: Microscopes in non-standard and smooth analysis. Studies in Computational Intelligence (SCI) 64: 193–213

    Article  Google Scholar 

  • du Bois-Reymond P. (1882) Die allgemeine Funktionentheorie. Erster Teil. Metaphysik und Theorie der mathematischen Grundbegriffe: Grösse, Grenze, Argument. Laupp, Tübingen

    Google Scholar 

  • Dubinsky E. (1991). Reflective abstraction in advanced mathematical thinking. Advanced mathematical thinking (see Tall 1991), Springer.

  • Ehrlich P. (2006) The rise of non-Archimedean mathematics and the roots of a misconception. I. The emergence of non-Archimedean systems of magnitudes. Archive for History of Exact Sciences 60(1): 1–121

    Article  Google Scholar 

  • Ehrlich, P. (2011). The absolute arithmetic continuum and the unification of all numbers great and small. Bulletin of Symbolic Logic (to appear).

  • Ely R. (2010) Nonstandard student conceptions about infinitesimals. Journal for Research in Mathematics Education 41(2): 117–146

    Google Scholar 

  • Feferman, S. (2009). Conceptions of the continuum [Le continu mathématique. Nouvelles conceptions, nouveaux enjeux]. Intellectica, 51, 169–189. See also http://math.stanford.edu/~feferman/papers/ConceptContin.pdf.

  • Felscher W. (1979) Naive Mengen und abstrakte Zahlen. III. [Naive sets and abstract numbers. III] Transfinite Methoden. With an erratum to Vol. II. Mannheim: Bibliographisches Institut.

  • Felscher W. (1985) Dialogues, strategies, and intuitionistic provability. Annauls Pure Applications Logic 28(3): 217–254

    Article  Google Scholar 

  • Felscher, W. (1986). Dialogues as a Foundation for Intuitionistic Logic, in Handbook of philosophical logic, Vol. 5. In M. Dov (Ed.), Gabbay and Franz Guenthner. Kluwer (second edition in 2001).

  • Felscher W. (2000) Bolzano, Cauchy, epsilon, delta. American Mathematical Monthly 107(9): 844–862

    Article  Google Scholar 

  • Fisher G. (1979) Cauchy’s variables and orders of the infinitely small. The British Journal for the Philosophy of Science 30(3): 261–265

    Article  Google Scholar 

  • Fisher G. (1981) The infinite and infinitesimal quantities of du Bois-Reymond and their reception. Archive for History of Exact Sciences 24(2): 101–163

    Article  Google Scholar 

  • Fraenkel, A. (1946). Einleitung in die Mengenlehre. New York, NY: Dover Publications (originally published by Springer, Berlin, 1928).

  • Frayne, T., Morel, A. C., & Scott, D. S. (1962–1963). Reduced direct products. Fundamenta Mathematica, 51, 195–228.

  • Freudenthal, H. (1971). Augustin-Louis Cauchy. In C. C. Gillispie (Ed.), Dictionary of scientific biography (Vol. 3, pp. 131–148). New York: Charles Scribner’s sons.

  • Freudenthal H. (1971) Did Cauchy plagiarise Bolzano?. Archive for History of Exact Sciences 7: 375–392

    Article  Google Scholar 

  • Gelfand, I., & Kolmogoroff, A. (1939). On rings of continuous functions on topological spaces. [J] C. R. (Dokl.) Acad. Sci. URSS, n. Ser. 22, pp. 11–15.

  • Gilain, C. (1989). Cauchy et le cours d’analyse de l’Ecole polytechnique. With an editorial preface by Emmanuel Grison. Bull. Soc. Amis Bibl. Ecole Polytech., no. 5, 145 pp. See http://www.sabix.org/bulletin/b5/cauchy.html.

  • Giordano P. (2010) The ring of Fermat reals. Advances in Mathematics 225(4): 2050–2075

    Article  Google Scholar 

  • Giordano P. (2010) Infinitesimals without logic. Russian Journal of Mathematical Physics 17(2): 159–191

    Article  Google Scholar 

  • Giordano, P. (2011). Fermat-Reyes method in the ring of Fermat reals. To appear in Advances in Mathematics.

  • Goldblatt R. (1998) Lectures on the hyperreals. An introduction to nonstandard analysis. Graduate texts in mathematics, 188. Springer, New York

    Google Scholar 

  • Grabiner J. (1983) Who gave you the epsilon? Cauchy and the origins of rigorous calculus. American Mathematical Monthly 90(3): 185–194

    Article  Google Scholar 

  • Grattan-Guinness, I. (1978/1979). Letter. Math. Intelligencer, 1(4), 247–248

    Google Scholar 

  • Grattan-Guinness, I. (1987) The Cauchy-Stokes-Seidel story on uniform convergence again: was there a fourth man? Bulletin de la Société mathématique de Belgique Series A, 38(1986), 225–235.

    Google Scholar 

  • Grattan-Guinness I. (2004) The mathematics of the past: Distinguishing its history from our heritage. Historia Mathematica 31: 163–185

    Article  Google Scholar 

  • Gray E., Tall D. (1994) Duality, ambiguity and flexibility: A proceptual view of simple arithmetic. The Journal for Research in Mathematics Education 26(2): 115–141

    Google Scholar 

  • Gray J. (2008) Plato’s ghost. The modernist transformation of mathematics. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Hardy, G. H. (1910). Orders of infinity, the “Infinitärcalcül” of Paul Du Bois-Reymond. Cambridge: Cambridge University Press. (Second Edition, 1924. First Edition reprinted by Hafner, New York, 1971).

  • Hawking, S. (ed) (2007) The mathematical breakthroughs that changed history. Running Press, Philadelphia, PA

    Google Scholar 

  • Hewitt E. (1948) Rings of real-valued continuous functions. I. Transactions of the American Mathematical Society 64: 45–99

    Article  Google Scholar 

  • Hewitt, E. (1990). So far, so good: My life up to now. The Mathematical Intelligencer, 12(3), 58–63. See http://at.yorku.ca/t/o/p/c/86.dir/hewitt.htm.

  • Isbell J. R. (1954) More on the continuity of the real roots of an algebraic equation. Proceedings of the American Mathematical Society 5: 439

    Article  Google Scholar 

  • Katz, K., & Katz, M. (2010a). Zooming in on infinitesimal 1−.9 in a post-triumvirate era. Educational Studies in Mathematics, 74(3), 259–273. See arXiv:1003.1501.

    Google Scholar 

  • Katz K., Katz M. (2010b) When is .999 . . .less than 1?. The Montana Mathematics Enthusiast 7(1): 3–30

    Google Scholar 

  • Katz, K., & Katz, M. (2011a). A Burgessian critique of nominalistic tendencies in contemporary mathematics and its historiography. Foundations of Science. doi:10.1007/s10699-011-9223-1. See http://www.springerlink.com/content/tj7j2810n8223p43/ and http://arxiv.org/abs/1104.0375.

  • Katz, K., & Katz, M. (2011b). Cauchy’s continuum. Perspectives on Science, 19(4).

  • Katz, K., & Katz, M. (2011c). Stevin numbers and reality. Foundations of Science. doi:10.1007/s10699-011-9228-9 Online First. See http://www.springerlink.com/content/14365870k67308l6/ and http://arxiv.org/abs/1107.3688.

  • Katz, K., & Katz, M. (2011d). Meaning in classical mathematics: Is it at odds with Intuitionism? Intellectica (to appear).

  • Katz, M., & Tall, D. The tension between intuitive infinitesimals and formal mathematical analysis. In B. Sriraman (Ed.) http://www.infoagepub.com/products/Crossroads-in-the-History-of-Mathematics

  • Keisler, H. J. (1986). Elementary calculus: An infinitesimal approach, 2nd edn. Boston: Prindle, Weber & Schimidt.

  • Keisler, H. J. (1994). The hyperreal line. Real numbers, generalizations of the reals, and theories of continua, Synthese Lib. (Vol. 242, pp. 207–237). Dordrecht: Kluwer.

  • Keisler, H. J. (2008). The ultraproduct construction. In Proceedings of the ultramath conference, Pisa, Italy.

  • Klein, F. (1932). Elementary mathematics from an advanced standpoint. Vol. I. Arithmetic, algebra, analysis, (E. R. Hedrick & C. A. Noble, Trans). New York: Macmillan (From the third German edition [Springer, Berlin, 1924]. Originally published as Elementarmathematik vom höheren Standpunkte aus (Leipzig, 1908)).

  • Kurepa, D. (1982). Around Bolzano’s approach to real numbers. Czechoslovak Mathematical Journal, vol. 4, 32(107), 655–666

    Google Scholar 

  • Lakatos, I. (1976). Proofs and refutations. In J. Worrall & E. Zahar (Eds.), The logic of mathematical discovery. Cambridge-New York-Melbourne: Cambridge University Press.

  • Lakatos, I. (1978). Cauchy and the continuum: the significance of nonstandard analysis for the history and philosophy of mathematics. Math. Intelligencer 1, no. 3, 151–161 (paper originally presented in 1966).

  • Laugwitz D. (1987) Infinitely small quantities in Cauchy’s textbooks. Historia Mathmatica 14(3): 258–274

    Article  Google Scholar 

  • Laugwitz D. (1989) Definite values of infinite sums: Aspects of the foundations of infinitesimal analysis around 1820. Archive for History of Exact Sciences 39(3): 195–245

    Article  Google Scholar 

  • Laugwitz D. (1992) Early delta functions and the use of infinitesimals in research. Revue d’histoire des sciences 45(1): 115–128

    Article  Google Scholar 

  • Laugwitz D. (1997) On the historical developement of infinitesimal mathematics. Part II. The conceptual thinking of Cauchy. Translated from the German by Abe Shenitzer with the editorial assistance of Hardy Grant. American Mathmatics Monthly 104(7): 654–663

    Article  Google Scholar 

  • Lightstone A. H. (1972) Infinitesimals. American Mathmatics Monthly 79: 242–251

    Article  Google Scholar 

  • Łoś, J. (1955). Quelques remarques, théorèmes et problèmes sur les classes définissables d’algèbres. In Mathematical interpretation of formal systems (pp. 98–113). Amsterdam: North-Holland Publishing Co.

  • Lützen, J. (2003). The foundation of analysis in the 19th century. A history of analysis (pp. 155–195). Hist. Math., 24, Amer. Math. Soc., Providence, RI.

  • Luxemburg, W. (1964). Nonstandard analysis. Lectures on A. Robinson’s Theory of infinitesimals and infinitely large numbers. Pasadena: Mathematics Department, California Institute of Technology’ second corrected ed.

  • Magnani L., Dossena R. (2005) Perceiving the infinite and the infinitesimal world: Unveiling and optical diagrams in mathematics. Foundations of Science 10(1): 7–23

    Article  Google Scholar 

  • Mal’tsev, A. I. [Malcev, Mal’cev] (1936). Untersuchungen aus dem Gebiete der mathematischen Logik. [J] Rec. Math. Moscou (Matematicheskii Sbornik), 1(43), 323–335.

  • Medvedev, F. A. (1987). Nonstandard analysis and the history of classical analysis. Patterns in the development of modern mathematics (Russian) (pp. 75–84). Moscow: Nauka.

  • Medvedev, F. A. (1993). N. N. Luzin on non-Archimedean time. (Russian) Istor.-Mat. Issled. 34, 103–128.

  • Medvedev, F. A. (1998). Nonstandard analysis and the history of classical analysis. (A. Shenitzer, Trans.). The American Mathematical Monthly, 105(7), 659–664.

  • Meschkowski H. (1965) Aus den Briefbuchern Georg Cantors. Archive for History of Exact Sciences 2: 503–519

    Article  Google Scholar 

  • Nelson E. (1977) Internal set theory: A new approach to nonstandard analysis. Bulletin of the American Mathematical Society 83(6): 1165–1198

    Article  Google Scholar 

  • Newton, I. (1946). Sir Isaac Newton’s mathematical principles of natural philosophy and his system of the world, a revision by F. Cajori of A. Motte’s 1729 translation. Berkeley: University of California Press.

  • Newton, I. (1999). The Principia: Mathematical principles of natural philosophy (I. B. Cohen & A. Whitman, Trans.). Preceded by A guide to Newton’s Principia by I. B. Cohen. Berkeley: University of California Press.

  • Núñez R., Edwards L., Matos J. (1999) Embodied cognition as grounding for situatedness and context in mathematics education. Educational Studies in Mathematics 39(1–3): 45–65. doi:10.1023/A:1003759711966

    Article  Google Scholar 

  • Pourciau B. (2001) Newton and the notion of limit. Historia Mathmatica 28(1): 18–30

    Article  Google Scholar 

  • Pringsheim, A. (1897). On two theorems of Abel pertaining to the continuity of sums of series. (Ueber zwei Abel’sche Sätze, die Stetigkeit von Reihensummen betreffend.) (German) [J] Münch. Ber. [Sitz.-Ber. Königl. Akad. Wiss. München] 27, 343–356.

  • Robert, A. M. (2003). Nonstandard analysis. Mineola, NY: Dover Publications. ISBN 0-486-43279-3.

  • Robinson A. (1966) Non-standard analysis. North-Holland Publishing Co, Amsterdam

    Google Scholar 

  • Roquette P. (2010) Numbers and models, standard and nonstandard. Math Semesterber 57: 185–199

    Article  Google Scholar 

  • Russell B. (1903) The principles of mathematics. Routledge, London

    Google Scholar 

  • Sad L. A., Teixeira M. V., Baldino R. B. (2001) Cauchy and the problem of point-wise convergence. Archives Internationales d’Histoire des sciences 51(147): 277–308

    Google Scholar 

  • Schmieden C., Laugwitz D. (1958) Eine Erweiterung der Infinitesimalrechnung. Mathematische Zeitschrift 69: 1–39

    Article  Google Scholar 

  • Schubring G. (2005) Conflicts between generalization, rigor, and intuition. Number concepts underlying the development of analysis in 17–19th Century France and Germany. Sources and studies in the history of mathematics and physical sciences. Springer, New York

    Google Scholar 

  • Schwarz, H. A.: Letter to G. Cantor dated 1 april 1870. In Meschkowski (1965).

  • Sfard A. (1991) On the dual nature of mathematical conceptions: Reflections on processes and objects as different sides of the same coin. Educational Studies in Mathematics 22: 1–36

    Article  Google Scholar 

  • Sherry D. (1987) The wake of Berkeley’s analyst: Rigor mathematicae?.  Studies in History and Philosophy of Science 18(4): 455–480

    Article  Google Scholar 

  • Siegmund-Schultze, R. (2000). Review of Felscher (2000) for Zentralblatt MATH. See http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1016.01009

  • Sinaceur H. (1973) Cauchy et Bolzano. Revue d’Histoire des sciences et de leurs Applications 26(2): 97–112

    Article  Google Scholar 

  • Skolem Th (1934) Über die Nicht-charakterisierbarkeit der Zahlenreihe mittels endlich oder abzählbar unendlich vieler Aussagen mit ausschliesslich Zahlenvariablen. Fundamenta Mathematicae 23: 150–161

    Google Scholar 

  • Smithies F. (1986) Cauchy’s conception of rigour in analysis. Archive for History of Exact Sciences 36(1): 41–61

    Article  Google Scholar 

  • Stolz, O. (1885). Vorlesungen über Allgemeine Arithmetik, Erster Theil: Allgemeines und Arithhmetik der Reellen Zahlen. Leipzig: Teubner.

  • Stroyan, K. (1972). Uniform continuity and rates of growth of meromorphic functions. Contributions to non-standard analysis (Sympos., Oberwolfach, 1970), pp. 47–64. Studies in Logic and Foundations of Math. (Vol. 69). North-Holland, Amsterdam.

  • Tall D (1980) Looking at graphs through infinitesimal microscopes, windows and telescopes. The Mathematical Gazette 64: 22–49

    Article  Google Scholar 

  • Tall, D. (1991). The psychology of advanced mathematical thinking, in Advanced mathematical thinking. In D. O. Tall (Ed.), Mathematics education library (Vol. 11). Dordrecht: Kluwer.

  • Tall D. (2009) Dynamic mathematics and the blending of knowledge structures in the calculus. Transforming mathematics education through the use of dynamic mathematics. ZDM 41(4): 481–492

    Article  Google Scholar 

  • Tarski A. (1930) Une contribution à la théorie de la mesure. Fundamenta Mathematicae 15: 42–50

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail G. Katz.

Additional information

M. G. Katz—Supported by the Israel Science Foundation grant 1294/06.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borovik, A., Katz, M.G. Who Gave You the Cauchy–Weierstrass Tale? The Dual History of Rigorous Calculus. Found Sci 17, 245–276 (2012). https://doi.org/10.1007/s10699-011-9235-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10699-011-9235-x

Keywords

Navigation