Skip to main content
Log in

The mechanism of mismatch repair and the functional analysis of mismatch repair defects in Lynch syndrome

  • Original Article
  • Published:
Familial Cancer Aims and scope Submit manuscript

Abstract

The majority of Lynch syndrome (LS), also known as hereditary non-polyposis colorectal cancer (HNPCC), has been linked to heterozygous defects in DNA mismatch repair (MMR). MMR is a highly conserved pathway that recognizes and repairs polymerase misincorporation errors and nucleotide damage as well as functioning as a damage sensor that signals apoptosis. Loss-of-heterozygosity (LOH) that retains the mutant MMR allele and epigenetic silencing of MMR genes are associated with an increased mutation rate that drives carcinogenesis as well as microsatellite instability that is a hallmark of LS/HNPCC. Understanding the biophysical functions of the MMR components is crucial to elucidating the role of MMR in human tumorigenesis and determining the pathogenetic consequences of patients that present in the clinic with an uncharacterized variant of the MMR genes. We summarize the historical association between LS/HNPCC and MMR, discuss the mechanism of the MMR and finally examine the functional analysis of MMR defects found in LS/HNPCC patients and their relationship with the severity of the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Lynch HT (1985) Classics in oncology. Aldred Scott Warthin, M.D., Ph.D. (1866–1931). CA Cancer J Clin 35(6): 345–7

  2. Classics in oncology. Heredity with reference to carcinoma as shown by the study of the cases examined in the pathological laboratory of the University of Michigan, 1895–1913. By Aldred Scott Warthin. 1913. CA Cancer J Clin 1985 Nov–Dec; 35(6): 348–59

  3. Lynch HT, Smyrk T (1996) Hereditary nonpolyposis colorectal cancer (Lynch syndrome). An updated review. Cancer 78(6):1149–1167

    Article  PubMed  CAS  Google Scholar 

  4. Peltomaki P, Sistonen P, Mecklin JP et al (1992) Evidence that the MCC-APC gene region in 5q21 is not the site for susceptibility to hereditary nonpolyposis colorectal carcinoma. Cancer Res 52(16):4530–4533

    PubMed  CAS  Google Scholar 

  5. Ionov Y, Peinado MA, Malkhosyan S, Shibata D, Perucho M (1993) Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis. Nature 363(6429):558–561

    Article  PubMed  CAS  Google Scholar 

  6. Peltomaki P, Lothe RA, Aaltonen LA et al (1993) Microsatellite instability is associated with tumors that characterize the hereditary non-polyposis colorectal carcinoma syndrome. Cancer Res 53(24):5853–5855

    PubMed  CAS  Google Scholar 

  7. Aaltonen LA, Peltomaki P, Leach FS et al (1993) Clues to the pathogenesis of familial colorectal cancer. Science 260(5109):812–816

    Article  PubMed  CAS  Google Scholar 

  8. Levinson G, Gutman GA (1987) High frequencies of short frameshifts in poly-CA/TG tandem repeats borne by bacteriophage M13 in Escherichia coli K-12. Nucleic Acids Res 15(13):5323–5338

    Article  PubMed  CAS  Google Scholar 

  9. Reenan RA, Kolodner RD (1992) Isolation and characterization of two Saccharomyces cerevisiae genes encoding homologs of the bacterial HexA and MutS mismatch repair proteins. Genetics 132(4):963–973

    PubMed  CAS  Google Scholar 

  10. Strand M, Prolla TA, Liskay RM, Petes TD (1993) Destabilization of tracts of simple repetitive DNA in yeast by mutations affecting DNA mismatch repair. Nature 365(6443):274–276

    Article  PubMed  CAS  Google Scholar 

  11. Fishel R, Kolodner RD (1995) Identification of mismatch repair genes and their role in the development of cancer. [Review] [158 refs]. Curr Opin Genet Dev 5(3):382–395

    Article  PubMed  CAS  Google Scholar 

  12. Kolodner R (1996) Biochemistry and genetics of eukaryotic mismatch repair. [Review] [85 refs]. Genes Dev 10(12):1433–1442

    Article  PubMed  CAS  Google Scholar 

  13. Modrich P, Lahue R (1996) Mismatch repair in replication fidelity, genetic recombination, and cancer biology. [Review] [225 refs]. Annu Rev Biochem 65:101–133

    Article  PubMed  CAS  Google Scholar 

  14. Dietmaier W, Wallinger S, Bocker T, Kullmann F, Fishel R, Ruschoff J (1997) Diagnostic microsatellite instability: definition and correlation with mismatch repair protein expression. Cancer Res 57(21):4749–4756

    PubMed  CAS  Google Scholar 

  15. Fishel R, Lescoe MK, Rao MR et al (1993) The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer. Cell 75(5):1027–1038

    Article  PubMed  CAS  Google Scholar 

  16. Leach FS, Nicolaides NC, Papadopoulos N et al (1993) Mutations of a mutS homolog in hereditary nonpolyposis colorectal cancer. Cell 75(6):1215–1225

    Article  PubMed  CAS  Google Scholar 

  17. Bronner CE, Baker SM, Morrison PT et al (1994) Mutation in the DNA mismatch repair gene homologue hMLH1 is associated with hereditary non-polyposis colon cancer. Nature 368(6468):258–261

    Article  PubMed  CAS  Google Scholar 

  18. Papadopoulos N, Nicolaides NC, Wei YF et al (1994) Mutation of a mutL homolog in hereditary colon cancer. Science 263(5153):1625–1629

    Article  PubMed  CAS  Google Scholar 

  19. Nicolaides NC, Papadopoulos N, Liu B et al (1994) Mutations of two PMS homologues in hereditary nonpolyposis colon cancer. Nature 371(6492):75–80

    Article  PubMed  CAS  Google Scholar 

  20. Papadopoulos N, Nicolaides NC, Liu B et al (1995) Mutations of GTBP in genetically unstable cells. Science 268:1915–1917

    Article  PubMed  CAS  Google Scholar 

  21. Lipkin SM, Wang V, Jacoby R et al (2000) MLH3: a DNA mismatch repair gene associated with mammalian microsatellite instability. Nat Genet 24(1):27–35

    Article  PubMed  CAS  Google Scholar 

  22. Loeb LA (1991) Mutator phenotype may be required for multistage carcinogenesis. [Review] [63 refs]. Cancer Res 51(12):3075–3079

    PubMed  CAS  Google Scholar 

  23. Shibata D, Peinado MA, Ionov Y, Malkhosyan S, Perucho M (1994) Genomic instability in repeated sequences is an early somatic event in colorectal tumorigenesis that persists after transformation. Nat Genet 6(3):273–281

    Article  PubMed  CAS  Google Scholar 

  24. Zhang H, Richards B, Wilson T et al (1999) Apoptosis induced by overexpression of hMSH2 or hMLH1. Cancer Res 59(13):3021–3027

    PubMed  CAS  Google Scholar 

  25. Duval A, Hamelin R (2002) Genetic instability in human mismatch repair deficient cancers. Ann Genet 45(2):71–75

    Article  PubMed  Google Scholar 

  26. Duval A, Hamelin R (2002) Mutations at coding repeat sequences in mismatch repair-deficient human cancers: toward a new concept of target genes for instability. Cancer Res 62(9):2447–2454

    PubMed  CAS  Google Scholar 

  27. Markowitz S, Wang J, Myeroff L et al (1995) Inactivation of the type II TGF-beta receptor in colon cancer cells with microsatellite instability. Science 268(5215):1336–1338

    Article  PubMed  CAS  Google Scholar 

  28. Souza RF, Appel R, Yin J et al (1996) Microsatellite instability in the insulin-like growth factor II receptor gene in gastrointestinal tumours. Nat Genet 14(3):255–257

    Article  PubMed  CAS  Google Scholar 

  29. Rampino N, Yamamoto H, Ionov Y et al (1997) Somatic frameshift mutations in the BAX gene in colon cancers of the microsatellite mutator phenotype. Science 275(5302):967–969

    Article  PubMed  CAS  Google Scholar 

  30. Boland CR, Thibodeau SN, Hamilton SR et al (1998) A national cancer Institute workshop on microsatellite instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res 58(22):5248–5257

    PubMed  CAS  Google Scholar 

  31. Frayling IM (1999) Microsatellite instability. Gut 45(1):1–4

    Article  PubMed  CAS  Google Scholar 

  32. Baudhuin LM, Burgart LJ, Leontovich O, Thibodeau SN (2005) Use of microsatellite instability and immunohistochemistry testing for the identification of individuals at risk for Lynch syndrome. Fam Cancer 4(3):255–265

    Article  PubMed  Google Scholar 

  33. Umar A, Boland CR, Terdiman JP et al (2004) Revised Bethesda guidelines for hereditary nonpolyposis colorectal cancer (Lynch syndrome) and microsatellite instability. J Natl Cancer Inst 96(4):261–268

    Article  PubMed  CAS  Google Scholar 

  34. Bocker T, Diermann J, Friedl W et al (1997) Microsatellite instability analysis: a multicenter study for reliability and quality control. Cancer Res 57(21):4739–4743

    PubMed  CAS  Google Scholar 

  35. Roger M (1972) Evidence for conversion of heteroduplex transforming DNAs to homoduplex by recipient pneumococcal cells. Proc Nat Acad Sci USA 69:466–470

    Article  PubMed  CAS  Google Scholar 

  36. Tiraby J-G, Fox MS (1973) Marker discrimination in transformation and mutation of pneumococcus. Proc Natl Acad Sci USA 70:3541–3545

    Article  PubMed  CAS  Google Scholar 

  37. Wildenberg J, Meselson M (1975) Mismatch repair in heteroduplex DNA. Proc Natl Acad Sci USA 72(6):2202–2206

    Article  PubMed  CAS  Google Scholar 

  38. Marinus MG (1976) Adenine methylation of Okazaki fragments in Escherichia coli. J Bacteriol 128(3):853–854

    PubMed  CAS  Google Scholar 

  39. Radman M, Wagner RE, Glickman BW, Meselson M (1980) DNA methylation, mismatch correction and genetic stability. In: Alacevic M (ed) Progress in environmental mutagenesis. Elsevier/North Holland Biomedical Press, Amsterdam, pp 121–130

    Google Scholar 

  40. Siegel EC, Bryson V (1967) Mutator gene of Escherichia coli B. J Bacteriol 94:38–47

    PubMed  CAS  Google Scholar 

  41. Goldstein A, Smoot JS (1955) A strain of Escherichia coli with an unusually high rate of auxotrophic mutation. J Bacteriol 70:588–595

    PubMed  CAS  Google Scholar 

  42. Hill RF (1970) Location of genes controlling excision repair of UV damage and mutator activity in Escherichia coli WP2. Mutat Res 9(3):341–344

    Article  PubMed  CAS  Google Scholar 

  43. Marinus MG (1973) Location of DNA methylation genes on the Escherichia coli K-12 genetic map. Mol Gen Genet 127(1):47–55

    Article  PubMed  CAS  Google Scholar 

  44. Friedberg EC, Walker GC, Siede W, Wood RD, Schultz RA, Ellenberger T (2006) DNA repair and mutagenesis, 2nd edn. American Society of Microbiology, Washington

    Google Scholar 

  45. Iyer RR, Pluciennik A, Burdett V, Modrich PL (2006) DNA mismatch repair: functions, mechanisms. Chem Rev 106(2):302–323

    Article  PubMed  CAS  Google Scholar 

  46. Jascur T, Boland CR (2006) Structure and function of the components of the human DNA mismatch repair system. Int J Cancer 119(9):2030–2035

    Article  PubMed  CAS  Google Scholar 

  47. Jiricny J (2006) The multifaceted mismatch-repair system. Nat Rev Mol Cell Biol 7(5):335–346

    Article  PubMed  CAS  Google Scholar 

  48. Welsh KM, Lu AL, Clark S, Modrich P (1987) Isolation and characterization of the Escherichia coli mutH gene product. J Biol Chem 262(32):15624–15629

    PubMed  CAS  Google Scholar 

  49. Constantin N, Dzantiev L, Kadyrov FA, Modrich P (2005) Human mismatch repair: reconstitution of a nick-directed bidirectional reaction. J Biol Chem 280(48):39752–39761

    Article  PubMed  CAS  Google Scholar 

  50. Grilley M, Griffith J, Modrich P (1993) Bidirectional excision in methyl-directed mismatch repair. J Biol Chem 268(16):11830–11837

    PubMed  CAS  Google Scholar 

  51. Kolodner RD, Mendillo ML, Putnam CD (2007) Coupling distant sites in DNA during DNA mismatch repair. Proc Natl Acad Sci USA 104(32):12953–12954

    Article  PubMed  CAS  Google Scholar 

  52. Junop MS, Obmolova G, Rausch K, Hsieh P, Yang W (2001) Composite active site of an ABC ATPase: MutS uses ATP to verify mismatch recognition and authorize DNA repair. Mol Cell 7(1):1–12

    Article  PubMed  CAS  Google Scholar 

  53. Allen DJ, Makhov A, Grilley M et al (1997) MutS mediates heteroduplex loop formation by a translocation mechanism. EMBO J 16(14):4467–4476

    Article  PubMed  CAS  Google Scholar 

  54. Blackwell LJ, Bjornson KP, Modrich P (1998) DNA-dependent activation of the hMutS alpha ATPase. J Biol Chem 273(48):32049–32054

    Article  PubMed  CAS  Google Scholar 

  55. Acharya S, Foster PL, Brooks P, Fishel R (2003) The coordinated functions of the E coli MutS and MutL proteins in mismatch repair. Mol Cell 12(1):233–246

    Article  PubMed  CAS  Google Scholar 

  56. Fishel R (1999) Signaling mismatch repair in cancer. Nat Med 5(11):1239–1241

    Article  PubMed  CAS  Google Scholar 

  57. Gradia S, Acharya S, Fishel R (1997) The human mismatch recognition complex hMSH2–hMSH6 functions as a novel molecular switch. Cell 91(7):995–1005

    Article  PubMed  CAS  Google Scholar 

  58. Gradia S, Subramanian D, Wilson T et al (1999) hMSH2–hMSH6 forms a hydrolysis-independent sliding clamp on mismatched DNA. Mol Cell 3(2):255–261

    Article  PubMed  CAS  Google Scholar 

  59. Pluciennik A, Modrich P (2007) Protein roadblocks and helix discontinuities are barriers to the initiation of mismatch repair. Proc Natl Acad Sci USA 104(31):12709–12713

    Article  PubMed  CAS  Google Scholar 

  60. Cho WK, Jeong C, Kim D et al (2012) ATP alters the diffusion mechanics of MutS on mismatched DNA. Structure 20(7):1264–1274

    Article  PubMed  CAS  Google Scholar 

  61. Jeong C, Cho WK, Song KM et al (2011) MutS switches between two fundamentally distinct clamps during mismatch repair. Nat Struct Mol Biol 18(3):379–385

    Article  PubMed  CAS  Google Scholar 

  62. Fishel R, Acharya S, Berardini M et al (2000) Signaling mismatch repair: the mechanics of an adenosine-nucleotide molecular switch. Cold Spring Harb Symp Quant Biol 65:217–224

    Article  PubMed  CAS  Google Scholar 

  63. Guerrette S, Wilson T, Gradia S, Fishel R (1998) Interactions of human hMSH2 with hMSH3 and hMSH2 with hMSH6: examination of mutations found in hereditary nonpolyposis colorectal cancer. Mol Cell Biol 18(11):6616–6623

    PubMed  CAS  Google Scholar 

  64. Fishel R, Wilson T (1997) MutS homologs in mammalian cells. [Review] [84 refs]. Curr Opin Genet Dev 7(1):105–113

    Article  PubMed  CAS  Google Scholar 

  65. Antony E, Hingorani MM (2004) Asymmetric ATP binding and hydrolysis activity of the Thermus aquaticus MutS dimer is key to modulation of its interactions with mismatched DNA. Biochemistry 43:13115–13128

    Article  PubMed  CAS  Google Scholar 

  66. Antony E, Khubchandani S, Chen S, Hingorani MM (2006) Contribution of Msh2 and Msh6 subunits to the asymmetric ATPase and DNA mismatch binding activities of Saccharomyces cerevisiae Msh2–Msh6 mismatch repair protein. DNA Repair (Amst) 5(2):153–162

    Article  CAS  Google Scholar 

  67. Heinen CD, Cyr JL, Cook C et al (2011) Human MSH2 (hMSH2) protein controls ATP processing by hMSH2–hMSH6. J Biol Chem 286(46):40287–40295

    Article  PubMed  CAS  Google Scholar 

  68. Mazur DJ, Mendillo ML, Kolodner RD (2006) Inhibition of Msh6 ATPase activity by mispaired DNA induces a Msh2(ATP)-Msh6(ATP) state capable of hydrolysis-independent movement along DNA. Mol Cell 22(1):39–49

    Article  PubMed  CAS  Google Scholar 

  69. Fishel R (1998) Mismatch repair, molecular switches, and signal transduction. [Review] [56 refs]. Genes Dev 12(14):2096–2101

    Article  PubMed  CAS  Google Scholar 

  70. Gradia S, Acharya S, Fishel R (2000) The role of mismatched nucleotides in activating the hMSH2–hMSH6 molecular switch. J Biol Chem 275:3922–3930

    Article  PubMed  CAS  Google Scholar 

  71. Snowden T, Acharya S, Butz C, Berardini M, Fishel R (2004) hMSH4–hMSH5 recognizes holliday junctions and forms a meiosis-specific sliding clamp that embraces homologous chromosomes. Mol Cell 15(3):437–451

    Article  PubMed  CAS  Google Scholar 

  72. Gorman J, Chowdhury A, Surtees JA et al (2007) Dynamic basis for one-dimensional DNA scanning by the mismatch repair complex Msh2–Msh6. Mol Cell 28(3):359–370

    Article  PubMed  CAS  Google Scholar 

  73. Gorman J, Plys AJ, Visnapuu ML, Alani E, Greene EC (2010) Visualizing one-dimensional diffusion of eukaryotic DNA repair factors along a chromatin lattice. Nat Struct Mol Biol 17(8):932–938

    Article  PubMed  CAS  Google Scholar 

  74. Li F, Tian L, Gu L, Li GM (2009) Evidence that nucleosomes inhibit mismatch repair in eukaryotic cells. J Biol Chem 284(48):33056–33061

    Article  PubMed  CAS  Google Scholar 

  75. Kunkel TA, Erie DA (2005) DNA mismatch repair. Annu Rev Biochem 74:681–710

    Article  PubMed  CAS  Google Scholar 

  76. Sass LE, Lanyi C, Weninger K, Erie DA (2011) Single-molecule FRET TACKLE reveals highly dynamic mismatched DNA-MutS complexes. Biochemistry 49(14):3174–3190

    Article  CAS  Google Scholar 

  77. Mazurek A, Johnson CN, Germann MW, Fishel R (2009) Sequence context effect for hMSH2–hMSH6 mismatch-dependent activation. Proc Natl Acad Sci USA 106(11):4177–4182

    Article  PubMed  CAS  Google Scholar 

  78. Obmolova G, Ban C, Hsieh P, Yang W (2000) Crystal structures of mismatch repair protein MutS, its complex with a substrate DNA [see comments]. Nature 407(6805):703–710

    Article  PubMed  CAS  Google Scholar 

  79. Lamers MH, Perrakis A, Enzlin JH, Winterwerp HH, de Wind N, Sixma TK (2000) The crystal structure of DNA mismatch repair protein MutS binding to a G x T mismatch. [see comments]. Nature 407(6805):711–717

    Article  PubMed  CAS  Google Scholar 

  80. Warren JJ, Pohlhaus TJ, Changela A, Iyer RR, Modrich PL, Beese LS (2007) Structure of the human MutSalpha DNA lesion recognition complex. Mol Cell 26(4):579–592

    Article  PubMed  CAS  Google Scholar 

  81. Javaid S, Manohar M, Punja N et al (2009) Nucleosome remodeling by hMSH2–hMSH6. Mol Cell 36(6):1086–1094

    Article  PubMed  CAS  Google Scholar 

  82. Guerrette S, Acharya S, Fishel R (1999) The interaction of the human MutL homologues in hereditary nonpolyposis colon cancer. J Biol Chem 274(10):6336–6341

    Article  PubMed  CAS  Google Scholar 

  83. Dutta R, Inouye M (2000) GHKL, An emergent ATPase/kinase superfamily. Trends Biochem Sci 25(1):24–28

    Article  PubMed  CAS  Google Scholar 

  84. Ban C, Yang W (1998) Crystal structure and ATPase activity of MutL: implications for DNA repair and mutagenesis. Cell 95(4):541–552

    Article  PubMed  CAS  Google Scholar 

  85. Sacho EJ, Kadyrov FA, Modrich P, Kunkel TA, Erie DA (2008) Direct visualization of asymmetric adenine nucleotide-induced conformational changes in Mutlalpha. Mol Cell 29(1):112–121

    Article  PubMed  CAS  Google Scholar 

  86. Bende SM, Grafstrom RH (1991) The DNA binding properties of the MutL protein isolated from Escherichia coli. Nucleic Acids Res 19:1549–1555

    Article  PubMed  CAS  Google Scholar 

  87. Drotschmann K, Hall MC, Shcherbakova PV et al (2002) DNA binding properties of the yeast Msh2–Msh6, Mlh1-Pms1 heterodimers. Biol Chem 383(6):969–975

    Article  PubMed  CAS  Google Scholar 

  88. Park J, Jeon Y, In D, Fishel R, Ban C, Lee JB (2010) Single-molecule analysis reveals the kinetics and physiological relevance of MutL-ssDNA binding. PLoS ONE 5(11):e15496

    Article  PubMed  CAS  Google Scholar 

  89. Kadyrov FA, Dzantiev L, Constantin N, Modrich P (2006) Endonucleolytic function of MutLalpha in human mismatch repair. Cell 126(2):297–308

    Article  PubMed  CAS  Google Scholar 

  90. Kadyrov FA, Holmes SF, Arana ME et al (2007) Saccharomyces cerevisiae MutLalpha is a mismatch repair endonuclease. J Biol Chem 282(51):37181–37190

    Article  PubMed  CAS  Google Scholar 

  91. Kosinski J, Plotz G, Guarne A, Bujnicki JM, Friedhoff P (2008) The PMS2 subunit of human MutLalpha contains a metal ion binding domain of the iron-dependent repressor protein family. J Mol Biol 382(3):610–627

    Article  PubMed  CAS  Google Scholar 

  92. Pillon MC, Lorenowicz JJ, Uckelmann M et al (2010) Structure of the endonuclease domain of MutL: unlicensed to cut. Mol Cell 39(1):145–151

    Article  PubMed  CAS  Google Scholar 

  93. Pillon MC, Miller JH, Guarne A (2010) The endonuclease domain of MutL interacts with the beta sliding clamp. DNA Repair (Amst) 10(1):87–93

    Article  CAS  Google Scholar 

  94. Grilley M, Welsh KM, Su SS, Modrich P (1989) Isolation and characterization of the Escherichia coli mutL gene product. J Biol Chem 264(2):1000–1004

    PubMed  CAS  Google Scholar 

  95. Mendillo ML, Mazur DJ, Kolodner RD (2005) Analysis of the interaction between the Saccharomyces cerevisiae MSH2–MSH6 and MLH1–PMS1 complexes with DNA using a reversible DNA end-blocking system. J Biol Chem 280(23):22245–22257

    Article  PubMed  CAS  Google Scholar 

  96. Schofield MJ, Nayak S, Scott TH, Du C, Hsieh P (2001) Interaction of Escherichia coli MutS and MutL at a DNA mismatch. J Biol Chem 276(30):28291–28299

    Article  PubMed  CAS  Google Scholar 

  97. Hombauer H, Campbell CS, Smith CE, Desai A, Kolodner RD (2011) Visualization of eukaryotic DNA mismatch repair reveals distinct recognition and repair intermediates. Cell 147(5):1040–1053

    Article  PubMed  CAS  Google Scholar 

  98. Lopez de Saro FJ, Marinus MG, Modrich P, O’Donnell M (2006) The beta sliding clamp binds to multiple sites within MutL and MutS. J Biol Chem 281(20):14340–14349

    Article  PubMed  CAS  Google Scholar 

  99. Viswanathan M, Lovett ST (1998) Single-strand DNA-specific exonucleases in Escherichia coli—roles in repair and mutation avoidance. Genetics 149(1):7–16

    PubMed  CAS  Google Scholar 

  100. Pluciennik A, Burdett V, Lukianova O, O’Donnell M, Modrich P (2009) Involvement of the beta clamp in methyl-directed mismatch repair in vitro. J Biol Chem 284(47):32782–32791

    Article  PubMed  CAS  Google Scholar 

  101. Ramilo C, Gu L, Guo S et al (2002) Partial reconstitution of human DNA mismatch repair in vitro: characterization of the role of human replication protein A. Mol Cell Biol 22(7):2037–2046

    Article  PubMed  CAS  Google Scholar 

  102. Pluciennik A, Dzantiev L, Iyer RR, Constantin N, Kadyrov FA, Modrich P (2010) PCNA function in the activation and strand direction of MutLalpha endonuclease in mismatch repair. Proc Natl Acad Sci USA 107(37):16066–16071

    Article  PubMed  CAS  Google Scholar 

  103. Zhang Y, Yuan F, Presnell SR et al (2005) Reconstitution of 5′-directed human mismatch repair in a purified system. Cell 122(5):693–705

    Article  PubMed  CAS  Google Scholar 

  104. Belvederesi L, Bianchi F, Galizia E et al (2008) MSH2 missense mutations, HNPCC syndrome: pathogenicity assessment in a human expression system. Hum Mutat 29(11):E296–E309

    Article  PubMed  Google Scholar 

  105. Hardt K, Heick SB, Betz B et al (2011) Missense variants in hMLH1 identified in patients from the German HNPCC consortium, functional studies. Fam Cancer 10(2):273–284

    Article  PubMed  CAS  Google Scholar 

  106. Kondo E, Suzuki H, Horii A, Fukushige S (2003) A yeast two-hybrid assay provides a simple way to evaluate the vast majority of hMLH1 germ-line mutations. Cancer Res 63(12):3302–3308

    PubMed  CAS  Google Scholar 

  107. Schmutte C, Marinescu RC, Sadoff MM, Guerrette S, Overhauser J, Fishel R (1998) Human exonuclease I interacts with the mismatch repair protein hMSH2. Cancer Res 58(20):4537–4542

    PubMed  CAS  Google Scholar 

  108. Schmutte C, Sadoff MM, Shim KS, Acharya S, Fishel R (2001) The interaction of DNA mismatch repair proteins with human exonuclease I. J Biol Chem 276(35):33011–33018

    Article  PubMed  CAS  Google Scholar 

  109. Raevaara TE, Korhonen MK, Lohi H et al (2005) Functional significance, clinical phenotype of nontruncating mismatch repair variants of MLH1. Gastroenterology 129(2):537–549

    PubMed  CAS  Google Scholar 

  110. Takahashi M, Shimodaira H, Andreutti-Zaugg C, Iggo R, Kolodner RD, Ishioka C (2007) Functional analysis of human MLH1 variants using yeast and in vitro mismatch repair assays. Cancer Res 67(10):4595–4604

    Article  PubMed  CAS  Google Scholar 

  111. Heinen CD, Wilson T, Mazurek A, Berardini M, Butz C, Fishel R (2002) HNPCC mutations in hMSH2 result in reduced hMSH2–hMSH6 molecular switch functions. Cancer Cell 1:469–478

    Article  PubMed  CAS  Google Scholar 

  112. Brieger A, Plotz G, Raedle J et al (2005) Characterization of the nuclear import of human MutLalpha. Mol Carcinog 43(1):51–58

    Article  PubMed  CAS  Google Scholar 

  113. Lei X, Zhu Y, Tomkinson A, Sun L (2004) Measurement of DNA mismatch repair activity in live cells. Nucleic Acids Res 32(12):e100

    Article  PubMed  CAS  Google Scholar 

  114. Ollila S, Dermadi Bebek D, Jiricny J, Nystrom M (2008) Mechanisms of pathogenicity in human MSH2 missense mutants. Hum Mutat 29(11):1355–1363

    Article  PubMed  CAS  Google Scholar 

  115. Trojan J, Zeuzem S, Randolph A et al (2002) Functional analysis of hMLH1 variants, HNPCC-related mutations using a human expression system. Gastroenterology 122(1):211–219

    Article  PubMed  CAS  Google Scholar 

  116. Naruse H, Ikawa N, Yamaguchi K et al (2009) Determination of splice-site mutations in Lynch syndrome (hereditary non-polyposis colorectal cancer) patients using functional splicing assay. Fam Cancer 8(4):509–517

    Article  PubMed  CAS  Google Scholar 

  117. Tournier I, Vezain M, Martins A et al (2008) A large fraction of unclassified variants of the mismatch repair genes MLH1, MSH2 is associated with splicing defects. Hum Mutat 29(12):1412–1424

    Article  PubMed  CAS  Google Scholar 

  118. Fishel R (2001) The selection for mismatch repair defects in hereditary nonpolyposis colorectal cancer: revising the mutator hypothesis. Cancer Res 61(20):7369–7374

    PubMed  CAS  Google Scholar 

  119. Gong JG, Costanzo A, Yang HQ et al (1999) The tyrosine kinase c-Abl regulates p73 in apoptotic response to cisplatin-induced DNA damage [see comments]. Nature 399(6738):806–809

    Article  PubMed  CAS  Google Scholar 

  120. Jain A, Liu R, Ramani B et al (2011) Probing cellular protein complexes using single-molecule pull-down. Nature 473(7348):484–488

    Article  PubMed  CAS  Google Scholar 

  121. Joo C, Balci H, Ishitsuka Y, Buranachai C, Ha T (2008) Advances in single-molecule fluorescence methods for molecular biology. Annu Rev Biochem 77:51–76

    Article  PubMed  CAS  Google Scholar 

  122. Roy R, Hohng S, Ha T (2008) A practical guide to single-molecule FRET. Nat Methods 5(6):507–516

    Article  PubMed  CAS  Google Scholar 

  123. Yoshioka K, Yoshioka Y, Hsieh P (2006) ATR kinase activation mediated by MutSalpha and MutLalpha in response to cytotoxic O6-methylguanine adducts. Mol Cell 22(4):501–510

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Christopher Heinen and members of the Fishel Laboratory for helpful discussions. This work was supported by NIH Grant CA67007.

Conflict of interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Fishel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martín-López, J.V., Fishel, R. The mechanism of mismatch repair and the functional analysis of mismatch repair defects in Lynch syndrome. Familial Cancer 12, 159–168 (2013). https://doi.org/10.1007/s10689-013-9635-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10689-013-9635-x

Keywords

Navigation