Skip to main content

Advertisement

Log in

Molecular diagnosis to identify new sources of resistance to sclerotinia blight in groundnut (Arachis hypogaea L.)

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Sclerotinia blight, caused by soil-borne fungus Sclerotinia minor Jagger, is one of the destructive diseases in groundnut. Pathogen affected plants usually displays lesions, wilt and collapse which cause high yield losses. Traditional field screening is time and resources consuming. Molecular markers associated with resistance genes offer an alternative selection technique which is relatively easy, more definite and not influenced by environmental fluctuations. In the present investigation, a marker-assisted diagnosis was done to screen 256 diverse germplasm for the presence or absence of SSR markers reported resistance or susceptibility to sclerotinia blight. One hundred and forty two genotypes from different botanical varieties were recognized as new potential sources of resistance to sclerotinia blight for field evaluation. The banding pattern related to the disease resistance is observed at high frequency in the variety vulgaris (39.4 %) and less distributed in the varieties fastigiata (38.0 %) and hypogaea (19.7 %) among the resistant genotypes in the collection. These genotypes had same banding pattern as reported for resistance germplasm. This work reports the successful application of marker-assisted diagnosis as a tool to identify resistance to sclerotinia blight in diverse collections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Arus P, Moreno-Gonzalez J (1993) Marker-assisted selection. In: Hayward MD, Bosemark NO, Romagosa I (eds) Plant breeding: principles and prospects. Chapman and Hall, Cambridge, pp 315–331

    Google Scholar 

  • Ashkani S, Rafii MY, Rusli I, Sariah M, Abdullah SNA, Rahim HA, Latif MA (2012) SSRs for marker-assisted selection for blast resistance in rice (Oryza sativa L.). Plant Mol Biol Report 30:79–86

    Article  Google Scholar 

  • Bailey JE, Brune PD (1997) Effect of crop pruning on Sclerotinia blight of peanut. Plant Dis 81:990–995

    Article  Google Scholar 

  • Boopathi NM (2013) Genetic mapping and marker assisted selection. Springer, India

    Book  Google Scholar 

  • Butzler TM, Bailey J, Beute MK (1998) Integrated management of Sclerotinia blight in peanut: utilizing canopy morphology, mechanical pruning, and fungicide timing. Plant Dis 82:1312–1318

    Article  Google Scholar 

  • Chamberlin KDC, Melouk HA, Payton ME (2010) Evaluation of the U.S. peanut mini core collection using a molecular marker for resistance to Sclerotinia minor Jagger. Euphytica 172:109–115

    Article  Google Scholar 

  • Chenault KD, Maas A, Melouk HA, Payton ME (2009) Discovery and characterization of a molecular marker for Sclerotinia minor (Jagger) resistance in peanut. Euphytica 166:357–365

    Article  CAS  Google Scholar 

  • Doyle JJ, Doyle JL (1990) A rapid total DNA preparation procedure for fresh plant tissue. Focus 12:13–15

    Google Scholar 

  • Ender M, Terpstra K, Kelly JD (2008) Marker-assisted selection for white mold resistance in common bean. Mol Breed 21:149–157

    Article  CAS  Google Scholar 

  • FAO (2012) FAOSTAT. FAO, Rome. http://faostat.fao.org/site/567/default.aspx. Accessed 18 June 2014

  • Ferguson ME, Burow MD, Schulze SR, Bramel PJ, Paterson AH, Kresovich S, Mitchell S (2004) Microsatellite identification and characterization in peanut (Arachis hypogaea L.). Theor Appl Genet 108:1064–1070

    Article  CAS  PubMed  Google Scholar 

  • Gil SV, Harob R, Oddinoc C, Kearneyc M, Zuzac M, Marinellic A, Marcha GJ (2008) Crop management practices in the control of peanut diseases caused by soilborne fungi. Crop Prot 27:1–9

    Google Scholar 

  • Gregory W, Krapovickas A, Gregory M (1980) Structure, variation, evolution, and classification in Arachis. In: Summerfield R, Bunting A (eds) Advances in legume science. Royal Botanic Gardens, Kew, London, pp 469–481

    Google Scholar 

  • Krapovickas SA, Rigoni VA (1994) Taxonomia del genero Arachis (Leguminosae). Bonplandia 8:1–186

    Google Scholar 

  • Laemmlen F (2001) Sclerotinia diseases. Agriculture and Natural Resources, University of California Publication, 8042:1–5

  • Liao B, Holbrook C (2007) Groundnut. In: Singh RJ (ed) Genetics resources, chromosome engineering and crop improvement, Oilseed Crops, vol 4. CRC Press, Boca Raton, pp 231–289

    Google Scholar 

  • Livingstone DM, Hampton JL, Phipps PM, Grabau EA (2005) Enhancing resistance to Sclerotinia minor in peanut by expressing a barley oxalate oxidase gene. Plant Physiol 137:1354–1362

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mace ES, Phong DT, Upadhyaya HD, Chandra S, Crouch JH (2006) SSR analysis of cultivated groundnut (Arachis hypogaea L.) germplasm resistant to rust and late leaf spot diseases. Euphytica 152:317–330

    Article  Google Scholar 

  • Melouk HA, Backman PA (1995) Management of soil borne fungal pathogens. In: Melouk HA, Shokes FM (eds) Peanut health management. APS, Minnesota, pp 75–82

    Google Scholar 

  • Mondal S, Badigannavar AM (2010) Molecular diversity and association of SSR markers to rust and late leaf spot resistance in cultivated groundnut (Arachis hypogaea L.). Plant Breed 129:68–71

    Article  CAS  Google Scholar 

  • Murty UR, Jahnavi MR (1983) Breeding potential of interspecific tetraploids in Arachis L. In: Feakin SD (ed) Proceedings of an international workshop on cytogenetics of Arachis. ICRISAT, Patancheru, pp 125–130

    Google Scholar 

  • Nagy ED, Chu Y, Guo Y, Khanal S, Tang S, Li Y, Dong W, Timper P, Taylor C, Ozias-Akins P, Holbrook CC, Beilinson V, Nielsen NC, Stalker HT, Knapp SJ (2010) Recombination is suppressed in an alien introgression on chromosome 5A of peanut harboring Rma, a dominant root knot nematode resistance gene. Mol Breed 26:357–370

    Article  CAS  Google Scholar 

  • Nigam SN, Aruna R (2008) Improving breeding efficiency for early maturity in peanut. Plant Breed Rev 30:295–316

    Google Scholar 

  • Porter DM, Melouk HM (1997) Sclerotinia blight. In: Kokalis-Burelle N, Porter DM, Rodriguez-Kabana R, Smith DH, Subrahmanyam P (eds) Compendium of peanut diseases, 2nd edn. American Phytopathological Society Press, St. Paul, pp 34–35

    Google Scholar 

  • Porter DM, Beute MK, Wyne JC (1975) Resistance of peanut germplasm to Sclerotinia sclerotiorum. Peanut Sci 2:78–80

    Article  Google Scholar 

  • Sarvamangala C, Gowda MVC, Varshney RK (2011) Identification of quantitative trait loci for protein content, oil content and oil quality for groundnut (Arachis hypogaea L.). Fıeld Crop Res 122:49–59

    Article  Google Scholar 

  • Shoba D, Manivannan N, Vindhiyavarman P, Nigam SN (2012) SSR markers associated for late leaf spot disease resistance by bulked segregant analysis in groundnut (Arachis hypogaea L.). Euphytica 188:265–272

    Article  CAS  Google Scholar 

  • Smith FD, Phipps PM, Stipes RJ (1992) Fluazinam: a new fungicide for control of sclerotinia blight and other soil borne diseases of peanut. Peanut Sci 19:115–120

    Article  CAS  Google Scholar 

  • Tallury SP, Hollowell JE, Isleib TG, Stalker HT (2014) Greenhouse evaluation of section Arachis wild species for sclerotinia blight and cylindrocladium black rot resistance. Peanut Sci 41:17–24

    Article  Google Scholar 

  • Thiessen LD, Woodward JE (2012) Diseases of peanut caused by soilborne pathogens in the Southwestern United States. ISRN Agron 2012:1–9

    Article  Google Scholar 

  • Upadhyaya HD, Bramel PJ, Ortiz R, Singh S (2002) Developing a mini core of peanut for utilization of genetic resources. Crop Sci 42:2150–2156

    Article  Google Scholar 

  • Upadhyaya HD, Sharma S, Dwivedi SL (2011) Arachis. In: Chittaranjan K (ed) Wild crop relatives: genomic and breeding resources legume crops and forages. Springer, Berlin, pp 1–19

    Chapter  Google Scholar 

  • Wu BM, Subbarao KV (2003) Effects of irrigation and tillage on the dynamics of Sclerotinia minor sclerotia and lettuce drop incidence. Phytopathology 93:1572–1580

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Ministry of Science, Industry and Technology of Turkey with the grant number of SANTEZ-01527-STZ-2012-2. We are grateful to International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Gene bank, Hyderabad, India for supplying genetic material and to the Scientific Research Projects Coordination Unit of Akdeniz University for continuous supports.

Conflict of interest

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bulent Uzun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yol, E., Upadhyaya, H.D. & Uzun, B. Molecular diagnosis to identify new sources of resistance to sclerotinia blight in groundnut (Arachis hypogaea L.). Euphytica 203, 367–374 (2015). https://doi.org/10.1007/s10681-014-1282-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-014-1282-2

Keywords

Navigation