Skip to main content
Log in

Molecular mapping of adult plant stripe rust resistance in wheat and identification of pyramided QTL genotypes

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

The Puccinia striiformis f. sp. tritici (Pst) pathotype, 134 E16A+, detected in 2002 in Australia, produced relatively lower and higher adult plant stripe rust responses, respectively, on cultivars Kukri and Janz in comparison to the pre-2002 Pst pathotype 110 E143A+. Molecular mapping of adult plant stripe rust response variation among 180 Kukri/Janz-derived doubled haploid lines over 4 years, two each with Pst pathotypes 110 E143A+ and 134 E16A+, was performed. QYr.sun-7B and QYr.sun-7D were consistently contributed by Kukri and Janz, respectively. QYr.sun-7D corresponded to the genomic location of Yr18 and QYr.sun-7B remains to be formally named. QYr.sun-1B, QYr.sun-5B, and QYr.sun-6B were detected during more than one season irrespective of the Pst pathotypes used, whereas QYr.sun-3B was identified only during the 2003 crop season. QYr.sun-1A contributed by Janz, and QYr.sun-2A from Kukri, were detected only against Pst pathotypes 110 E143A+ and 134 E16A+, respectively. The DH lines showing better resistance than the either parent carried combinations of 4 to 6 QTL. These lines are currently being used as stripe rust resistance donors in wheat breeding programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Akbari M, Wenzl P, Caig V, Carling J, Xia L, Yang S, Uszynski G, Mohler V, Lehmensiek A, Kuchel H, Hayden MJ, Howes N, Sharp P, Vaughan P, Rathmell B, Huttner E, Kilian A (2006) Diversity arrays technology (DArT) for high-throughput profiling of the hexaploid wheat genome. Theor Appl Genet 113:1409–1420

    Article  CAS  PubMed  Google Scholar 

  • Bariana HS, McIntosh RA (1993) Cytogenetic studies in wheat XIV. Location of rust resistance genes in VPM1 and their genetic linkage with other disease resistance genes in chromosome 2A. Genome 36:476–482

    Article  CAS  PubMed  Google Scholar 

  • Bariana HS, Hayden MJ, Ahmed NU, Bell JA, Sharp PJ, McIntosh RA (2001) Mapping of durable adult plant and seedling resistances to stripe rust and stem rust diseases in wheat. Aus J Agric Res 52:1247–1255

    Article  CAS  Google Scholar 

  • Bariana HS, Willey N, Venkata BP, Lehmensiek A, Standen GE, Lu M (2004) Breeding methodology to achieve durability for rust resistance in wheat. Proc. of 54th Australian Cereal Chemistry Conference and 11th Wheat Breeders Assembly, Canberra, ACT, 21–24 Sep, pp 8–12

  • Bariana HS, Brown GN, Bansal UK, Miah H, Standen GE, Lu M (2007a) Breeding triple rust resistant wheat cultivars for Australia using conventional and marker- assisted selection technologies. Aus J Agric Res 58:576–587

    Article  Google Scholar 

  • Bariana HS, Miah H, Brown GN, Willey N, Lehmensiek A (2007b) Molecular mapping of durable rust resistance in wheat and its implication in breeding. In: Buck HT, Nisi JE, Salomón N (eds) Wheat Production in Stressed Environments. Developments in Plant Breeding, vol 12. Springer, Berlin, pp 723–728

  • Börner A, Röder MS, Unger O, Meinel A (2000) The detection and molecular mapping of a major gene for non-specific adult-plant disease resistance against stripe rust (Puccinia striiformis) in wheat. Theor Appl Genet 100:1095–1099

    Article  Google Scholar 

  • Boukhatem N, Baret PV, Mingeot D, Jacquemin JM (2002) Quantitative trait loci for resistance against yellow rust in two wheat-derived recombinant inbred line populations. Theor Appl Genet 104:111–118

    Article  CAS  PubMed  Google Scholar 

  • Chalmers KJ, Campbell AW, Kretschmer J, Karakousis A, Henschke PH, Pierens S, Harker N, Pallotta M, Cornish GB, Shariflou MR, Rampling LR, McLauchlan A, Daggard G, Sharp PJ, Holton TA, Sutherland MW, Appels R, Langridge P (2001) Construction of three linkage maps in bread wheat, Triticum aestivum. Aus J Agric Res 52:1089–1119

    Article  CAS  Google Scholar 

  • Chhuneja P, Kaur S, Garg T, Ghai M, Kaur S, Parshar M, Bains NS, Goel RK, Keller B, Dhalliwal HS, Singh K (2007) Mapping of adult plant stripe rust resistance genes in diploid A genome species and their transfer to bread wheat. Theor Appl Genet 116:313–324

    Article  PubMed  Google Scholar 

  • Chu C-G, Xu SS, Friesen TL, Faris JD (2008) Whole genome mapping in a wheat doubled haploid population using SSRs and TRAPs and the identification of QTL for agronomic traits. Mol Breeding 22:251–266

    Article  CAS  Google Scholar 

  • Crossa J, Burguen˜o J, Dreisigacker J, Vargas M, Herrera-Foessel SA, Lillemo M, Singh RP, Trethowan R, Warburton M, Franco J, Reynolds M, Crouch JH, Ortiz R (2007) Association analysis of historical bread wheat germplasm using additive genetic covariance of relatives and population structure. Genetics 177:1889–1913

    Article  CAS  PubMed  Google Scholar 

  • Eriksen L, Afshari F, Christiansen MJ, McIntosh RA, Jahoor A (2004) Wellings CR (2004) Yr32 for resistance to stripe (yellow) rust present in the wheat cultivar Carstens V. Theor Appl Genet 108:567–575

    Article  CAS  PubMed  Google Scholar 

  • Johnson R, Taylor AJ (1980) Pathogenic variation in Puccinia striiformis in relation to the durability of yellow rust resistance in wheat. Ann Appl Biol 94:283–286

    Article  Google Scholar 

  • Kammholz SJ, Campbell AW, Sutherland MW, Hollamby GJ, Martin PJ, Eastwood RF, Barclay I, Wilson RE, Brennan PS, Sheppard JA (2001) Establishment and characterisation of wheat genetic mapping populations. Aus J of Agric Res 52:1079–1088

    Article  CAS  Google Scholar 

  • Kaur J (2006) Characterization of rust resistance in wheat using classical and molecular approaches. Ph.D. Thesis. University of Sydney, Australia

  • Kolmer JA, Singh RP, Garvin DF, Viccars L, William HM, Huerta-Espino J, Ogbonnaya FC, Raman H, Orford S, Bariana HS, Lagudah ES (2008) Analysis of the Lr34/Yr18 rust resistance region in wheat germplasm. Crop Sci 48:1841–1852

    Article  CAS  Google Scholar 

  • Kosambi D (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Google Scholar 

  • Lehmensiek A, Eckerman PJ, Verbyla AP, Appels R, Sutherland MW, Daggard GE (2005) Curation of wheat maps to improve map accuracy and QTL detection. Aus J Agric Res 56:1347–1354

    Article  Google Scholar 

  • Lu Y, Lan C, Liang S, Zhou X, Liu D, Xhou G, Lu Q, Jing J, Wang M, Xia X, He Z (2009) QTL mapping of adult-plant resistance to stripe rust in Italian common wheat cultivars Libelulla and Strampelli. Theor Appl Genet 119:1349–1359

    Article  CAS  PubMed  Google Scholar 

  • Macer RCF (1966) The formal and monosomic genetic analysis of stripe rust (Puccinia striiformis) resistance in wheat. In: Mackey J (ed) Proceedings of the 2nd International Wheat Genetics Symposium. Hereditas Supplement 2:127–142

  • Mallard S, Gaudet D, Aldeia A, Abelard C, Besnard AL, Sourdille P, Dedryver F (2005) Genetic analysis of durable resistance to yellow rust in bread wheat. Theor Appl Genet 110:1401–1409

    Article  CAS  PubMed  Google Scholar 

  • Manly KF, Cudmore RH Jr, Meer JM (2001) Map Manager QTX, cross-platform software for genetic mapping. Mammal Genome 12:930–932

    Article  CAS  Google Scholar 

  • Muhammad I, Matthew C, Maqbool A, John H, David M (2005) Identification of QTLs for quantitative resistance to stripe rust (Puccinia striiformis f.sp. triticii) in bread wheat. Plant Pathology J 4:8–13

    Article  Google Scholar 

  • Navabi A, Tewari JP, Singh RP, McCallum B, Laroche A, Briggs KG (2005) Inheritance and QTL analysis of durable resistance to stripe and leaf rusts in an Australian cultivar, Triticum aestivum ‘Cook’. Genome 48:97–107

    Article  CAS  PubMed  Google Scholar 

  • Nelson J, Van Deynze AE, Autrique E, Sorrells ME, Lu YH, Negre S, Bernard M, Leroy P (1995a) Molecular mapping of wheat. Homoeologous group 3. Genome 38:525–533

    CAS  PubMed  Google Scholar 

  • Nelson JC, Sorrells ME, Van Deynze AE, Lu YH, Atkinson M, Bernard M, Leroy P, Faris JD, Anderson JA (1995b) Molecular mapping of wheat: major genes and rearrangements in homeologous groups 4, 5 and 7. Genetics 141:721–731

    CAS  PubMed  Google Scholar 

  • Nelson JC, Van Deynze A, Autrique E, Sorrells ME, Lu YH, Merlino M, Atkinson M, Leroy P (1995c) Molecular mapping of wheat. Homoeologous group 2. Genome 38:516–524

    CAS  PubMed  Google Scholar 

  • Peng JH, Fahima T, Röder MS, Li YC, Grama A, Nevo E (2000) Microsatellite high-density mapping of the stripe rust resistance gene YrH52 region on chromosome 1B and evaluation of its marker-assisted selection in the F2 generation in wild emmer wheat. New Phytol 146:141–154

    Article  CAS  Google Scholar 

  • Pink DAC, Law CN (1985) The effect of homoeologous group-7 chromosomes upon adult plant resistance of wheat to yellow rust (Puccinia striiformis). Plant Pathol 34:255–262

    Article  Google Scholar 

  • Ramburan VP, Pretorius ZA, Louw JH, Boyd LA, Smith PH, Boshoff WHP, Prins R (2004) A genetic analysis of adult plant resistance to stripe rust in the wheat cultivar. Kariega Theor Appl Genet 108:1426–1433

    Article  CAS  Google Scholar 

  • Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier MH, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007–2023

    PubMed  Google Scholar 

  • Santra DK, Chen XM, Santra M, Campbell KG, Kidwell KK (2008) Identification of and QTL mapping of high-temperature adult-plant resistance to stripe in winter wheat cultivar (Triticum aestivum L.) Stephens. Theor Appl Genet 117:793–802

    Article  CAS  PubMed  Google Scholar 

  • Schmidt AL, McIntyre CL, Thompson J, Seymour NP, Liu CJ (2005) Quantitative trait loci for root lesion nematode (Pratylenchus thornei) resistance in Middle-Eastern landraces and their potential for introgression into Australian bread wheat. Aus J Agric Res 56:1059–1068

    Article  CAS  Google Scholar 

  • Singh RP, Huerta-Espino J, Rajaram S (2000) Achieving near-immunity to leaf and stripe rusts in wheat by combining slow rusting resistance genes. Acta Phytopathologica et Entomologica Hungarica 35:133–139

    CAS  Google Scholar 

  • Singh RP, Huerto-Espino J, William HM (2005) Genetics of durable resistance to leaf and stripe rust in wheat. Turk J Agric For 29:121–127

    CAS  Google Scholar 

  • Somers DJ, Isaac P, Edwards K (2004) A high density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114

    Article  CAS  PubMed  Google Scholar 

  • Suenaga K, Singh RP, Huerta-Espino J, William HM (2003) Microsatellite markers for Lr34/Yr18 and other quantitative trait loci for leaf rust and stripe rust in bread wheat. Phytopathology 93:881–890

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Basten CJ, Zeng ZB (2007) Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC. (http://statgen.ncsu.edu/ qtlcart/WQTLCart.htm)

  • Wellings CR, Wright DG, Keiper F, Loughman R (2003) First detection of wheat stripe rust in Western Australia: evidence for a foreign incursion. Australas Plant Pathol 32:321–322

    Article  Google Scholar 

Download references

Acknowledgments

We thank the Grains Research Development Corporation, Australia for funding through the Australian Cereal Rust Control Program and the Australian Winter Cereal Molecular Marker Program. We also thank Lynette Rampling, Gulay Mann and Matthew Morrell for the use of marker data in the construction of the K/J map. We thank Gary Standen and Bashir Gill for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. S. Bariana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bariana, H.S., Bansal, U.K., Schmidt, A. et al. Molecular mapping of adult plant stripe rust resistance in wheat and identification of pyramided QTL genotypes. Euphytica 176, 251–260 (2010). https://doi.org/10.1007/s10681-010-0240-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-010-0240-x

Keywords

Navigation