Skip to main content

Advertisement

Log in

Research and field monitoring on transgenic crops by the Centro Internacional de Mejoramiento de Maíz y Trigo (CIMMYT)

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

The International Maize and Wheat Improvement Center (CIMMYT) aims to genetically enhance both crops and generate public sector-provided products for the resource poor, e.g., drought tolerant wheat and insect resistant maize, and through international–national partnerships facilitate the acquisition of improved germplasm for non-mandate crops in the cropping systems where maize and wheat thrives; e.g., GM-papaya through a national food security undertaking in Bangladesh. The Center also engages in public awareness campaigns in projects such as Insect Resistance Maize for Africa (IRMA), which includes food, feed and environmental safety, monitoring of resistance and establishment of refugia, non-target effects and gene flow. Monitoring of genetic resources is a wide concern among the centers of the Consultative Group on International Agricultural Research (CGIAR), with an emphasis on the quality of gene banks. Decisions, policies and procedures about monitoring should be science-based, and this requires education, an area where CIMMYT and other CGIAR centers can play an important role. There will be a need to continue to evaluate the need for, and type of monitoring, as new (and unique) products are developed and released in the emergent economies of the world.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aguirre Gómez JA, Bellon MR, Smale M (2000) A regional análisis of maize biological diversity in southeastern Guanajato, Mexico. Econ Bot 54:60–72

    Google Scholar 

  • Baltazar BM, Sánchez-Gonzalez JJ, de la Cruz Larios L, Schoper JB (2005) Pollination between maize and teosinte: an important determinant of gene flow in Mexico. Theor Appl Genet 110:519–526

    Article  PubMed  Google Scholar 

  • Bellon MR, Berthaud J (2004) Transgenic maize and the evolution of landrace diversity in Mexico. The importance of farmers’ behavior. Plant Phys 134:883–888

    Article  CAS  Google Scholar 

  • Bellon MR, Berthaud J (2006) Traditional Mexican agricultural systems and the potential impacts of transgenic varieties on maize diversity. Agric Human Values 23:3–14

    Article  Google Scholar 

  • Bellon MR, Brush SB (1994) Keepers of maize in Chiapas, Mexico. Econ Bot 48:196–209

    Google Scholar 

  • Bellon MR, Risopoulos J (2001) Small-scale farmers expand the benefits of improved maize germplasm: a case study from Chiapas, Mexico. World Dev 29:799–811

    Article  Google Scholar 

  • Bellon MR, Berthaud J, Smale M, Aguirre JA, Taba S, Aragón F, Díaz J, Castro H (2003) Participatory landrace selection for on farm conservation: an example from the Central Valleys of Oaxaca, Mexico. Genet Resour Crop Evol 50:401–416

    Article  Google Scholar 

  • Bennett J (2003) Opportunities for increasing water productivity of CGIAR crops through plant breeding and molecular biology. In: Kijne JW, Barker R, Molden D (eds) Water productivity in agriculture: limits and opportunities for improvement. CABI Publishing, Wallingford, pp 103–126

    Google Scholar 

  • Brooks G, Barfoot P, Mele E, Messeguer J, Bénétrix F, Bloc D, Foueillassar X, Fabié A, Poeydomenge C (2004). Genetically modified maize: pollen movement and crop co-existence. PG Economics Ltd, UK

    Google Scholar 

  • Christou P (2002) No credible scientific evidence is presented to support claims that transgenic DNA was introgressed into traditional maize landraces in Oaxaca. Mexico Transgenic Res 11:iii–v

    CAS  Google Scholar 

  • CIMMYT (2005) Laboratory protocols: CIMMYT applied molecular genetics laboratory, 3rd edn. CIMMYT, El Batan

    Google Scholar 

  • Cleveland DA, Soleri D, Aragón Cuevas F, Crossa J, Gept P (2005) Detecting (trans)gene flow to landraces in centers of crop origin: lessons from the case of maize in Mexico. Environ Biosafety Res 4:197–208

    Article  PubMed  CAS  Google Scholar 

  • Crossa J, Hernandez CM, Bretting P, Eberhart SA, Taba S (1993) Statistical genetic considerations for maintaining germplasm collections. Theor Appl Genet 86:673–678

    Article  Google Scholar 

  • Danson J, Kimani M, Mbogori M (2006) Detection of Bacillus thuringiensis genes in transgenic maize by the PCR method and FTA paper technology. Afr J Biotech 5:2345–2349

    CAS  Google Scholar 

  • De Groote H (2002) Maize yield losses from stem borers in Kenya. Insect Sci Appl 22:89–96

    Google Scholar 

  • De Groote H, Mugo S, Bergvinson D, Odhiambo B (2005) Assessing the benefits and risks of GE crops: evidence from the Insect Resistant Maize for Africa project. Info Systems Biotech News Rep Feb 2005:7–9

    Google Scholar 

  • Dubouzet JG, Sakuma Y, Ito Y, Kasuga M, Dubouzet EG, Miura S, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J 33:751–763

    Article  PubMed  CAS  Google Scholar 

  • Gilmour SJ, Zarka DG, Stockinger EJ, Salazar MP, Houghton JM, Thomashow MF (1998) Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant J 16:433–442

    Article  PubMed  CAS  Google Scholar 

  • Heard MS, Clark SJ, Rothery P, Perry JN, Bohan DA, Brooks DR, Champion GT, Dewar AM, Hawes C, Haughton AJ, May MJ, Scott RJ, Stuart RS, Squire GR, Firbank LG (2006) Effects of successive seasons of genetically modified erbicide-tolerant maize cropping on weeds and invertebrates. Ann Appl Biol 149:249–254

    Article  Google Scholar 

  • Iwanaga M (2004) The role of international crop breeding: contributions to humanity. The 2004 R.W. Hougas lecture—University of Wisconsin, Madison. CIMMYT, El Batan

    Google Scholar 

  • Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotech 17:287–291

    Article  CAS  Google Scholar 

  • Kimenju SC, De Groote H, Karugia J, Mbogoh S, Poland D (2005) Consumer awareness and attitudes toward GM foods in Kenya. Afr J Biotech 4:1066–1075

    Google Scholar 

  • Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10:1391–1406

    Article  PubMed  CAS  Google Scholar 

  • Louette DR, Charrier A, Berthaud J (1997) In situ conservation of maize in Mexico: genetic diversity and maize seed management in traditional community. Econ Bot 51:20–38

    Google Scholar 

  • Mathur PB, Devi MJ, Serraj R, Yamaguchi-Shinozaki K, Vadez V, Sharma KK (2004) Evaluation of transgenic groundnut lines under water limited conditions. Int Arachis Newsl 24:33–34

    Google Scholar 

  • Mugo S, De Groote H, Bergvinson D, Mulaa M, Songa J, Gichuki S (2005) Developing Bt maize for resource-poor farmers—recent advances in the IRMA project. Afr J Biotech 4:1490–1504

    Google Scholar 

  • Ortiz-García S, Ezcurra E, Schoel B, Acevedo F, Soberón J, Snow AA (2005a) Absence of detectable transgenes in local landraces of maize in Oaxaca, Mexico (2003–2004). Proc Natl Acad Sci USA 102:12338–12343

    Article  PubMed  Google Scholar 

  • Ortiz-García S, Ezcurra E, Schoel B, Acevedo F, Soberón J, Snow AA (2005b) Reply to Cleveland et al.’s “Detecting (trans)gene flow to landraces in centers of crop origin: lessons from the case of maize in Mexico”. Environ Biosafety Res 4:209–215

    Article  Google Scholar 

  • Pellegrineschi A, Reynolds M, Pacheco M, Brito RM, Almeraya R, Yamaguchi-Shinozaki K, Hoisington D (2004) Stress-induced expression in wheat of the Arabidopsis thaliana DREB1A gene delays water stress symptoms under greenhouse conditions. Genome 47:493–500

    Article  PubMed  CAS  Google Scholar 

  • Quist D, Chapela IH (2001) Transgenic DNA introgressed into traditional maize landraces in Oaxaca, Mexico. Nature 414:541–543

    Article  PubMed  CAS  Google Scholar 

  • Sanou J, Gouesnard B, Charrier A (1997) Isozyme variability in West African maize cultivars (Zea mays L.). Maydica 42:1–11

    Google Scholar 

  • Serratos JA, Willcox MC, Castillo F (eds) (1995) Gene flor among maize landraces, improved maize varieties and teosinte: implications for trasgenic maize. INIFAP—CNBA—CIMMYT, El Batan

    Google Scholar 

  • Taba S, van Ginkel M, Hoisington D, Poland D (2004) Wellhausen-Anderson Plant Genetic Resources Center: operations manual. Centro Internacional de Mejoramiento de Maíz y Trigo (CIMMYT), El Batan

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodomiro Ortiz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoisington, D., Ortiz, R. Research and field monitoring on transgenic crops by the Centro Internacional de Mejoramiento de Maíz y Trigo (CIMMYT). Euphytica 164, 893–902 (2008). https://doi.org/10.1007/s10681-007-9633-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-007-9633-x

Keywords

Navigation