Skip to main content
Log in

Common bean breeding for resistance against biotic and abiotic stresses: From classical to MAS breeding

  • Published:
Euphytica Aims and scope Submit manuscript

Summary

Breeding for resistance to biotic and abiotic stresses of global importance in common bean is reviewed with emphasis on development and application of marker-assisted selection (MAS). The implementation and adoption of MAS in breeding for disease resistance is advanced compared to the implementation of MAS for insect and abiotic stress resistance. Highlighted examples of breeding in common bean using molecular markers reveal the role and success of MAS in gene pyramiding, rapidly deploying resistance genes via marker-assisted backcrossing, enabling simpler detection and selection of resistance genes in absence of the pathogen, and contributing to simplified breeding of complex traits by detection and indirect selection of quantitative trait loci (QTL) with major effects. The current status of MAS in breeding for resistance to angular leaf spot, anthracnose, Bean common mosaic and Bean common mosaic necrosis viruses, Beet curly top virus, Bean golden yellow mosaic virus, common bacterial blight, halo bacterial blight, rust, root rots, and white mold is reviewed in detail. Cumulative mapping of disease resistance traits has revealed new resistance gene clusters while adding to others, and reinforces the co-location of QTL conditioning resistance with specific resistance genes and defense-related genes. Breeding for resistance to insect pests is updated for bean pod weevil (Apion), bruchid seed weevils, leafhopper, thrips, bean fly, and whitefly, including the use of arcelin proteins as selectable markers for resistance to bruchid seed weevils. Breeding for resistance to abiotic stresses concentrates on drought, low soil phosphorus, and improved symbiotic nitrogen fixation. The combination of root growth and morphology traits, phosphorus uptake mechanisms, root acid exudation, and other traits in alleviating phosphorus deficiency, and identification of numerous QTL of relatively minor effect associated with each trait, reveals the complexity to be addressed in breeding for abiotic stress resistance in common bean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abawi, G.S. & M.A. Pastor-Corrales, 1990. Root rots of beans in Latin America and Africa: Diagnosis, research methodologies, and management strategies. Centro Internacional de Agricultura Tropical (CIAT), Cali, Colombia, 114 p.

  • Acevedo-Román, M., A. Molina-Castañeda, J.C. Angel Sánchez, C.G. Muñoz & J.S. Beaver, 2004. Inheritance of normal pod development in bean golden yellow mosaic resistant common bean. J Am Soc Hort Sci 129: 549–552.

    Google Scholar 

  • Acosta-Gallegos, J.A., R. Ochoa-Marquez, M.P. Arrieta-Montiel, F. Ibarra-Perez, A. Pajarito-Ravelero & I. Sanchez-Valdez, 1995. Registration of ‘Pinto Villa’ common bean. Crop Sci 35: 1211.

    Article  Google Scholar 

  • Acosta-Gallegos, J.A., C. Quintero, J. Vargas, O. Toro, J. Tohme & C. Cardona, 1998. A new variant of arcelin in wild common bean Phaseolus vulgaris L. from southern México. Genet Resources Crop Evol 45: 235–242.

    Article  Google Scholar 

  • Adam-Blondon, A.F., M. Sevignac, H. Bannerot & M. Dron, 1994. SCAR, RAPD, and RFLP markers linked to the dominant gene (Are) conferring resistance to anthracnose. Theor Appl Genet 88: 865–870.

    Article  CAS  Google Scholar 

  • Aggarwal, V.D., M.A. Pastor-Corrales, R.M. Chirwa & R.A. Buruchara, 2004. Andean beans (Phaseolus vulgaris L.) with resistance to the angular leaf spot pathogen (Phaeoisariopsis griseola) in southern and eastern Africa. Euphytica 136: 201–210.

    Article  Google Scholar 

  • Ariyarathne, H.M., D.P. Coyne, G. Jung, P.W. Skroch, A.K. Vidaver, J.R. Steadman, P.N. Miklas & M.J. Bassett, 1999. Molecular mapping of disease resistance genes for halo blight, common bacterial blight, and bean common mosaic virus in a segregating population of common bean. J Am Soc Hort Sci 124: 654–662.

    CAS  Google Scholar 

  • Balardin, R.S. & J.D. Kelly, 1998. Interaction among races of Colletotrichum lindemuthianum and diversity in Phaseolus vulgaris. J Am Soc Hort Sci 123: 1038–1047.

    Google Scholar 

  • Barron, J.E., R.S. Pasini, D.W. Davis, D.D. Stuthman & P.H. Graham, 1999. Response to selection for seed yield and nitrogen (N2) fixation in common bean (Phaseolus vulgaris L.). Field Crops Research 62: 119–128.

    Article  Google Scholar 

  • Bassett, M.J., 2004. List of genes – Phaseolus vulgaris L. Annu Rep Bean Improv Coop 47: 1–24.

    Google Scholar 

  • Beaver, J.S., J.M. Osorno, F.H. Ferwerda & C.G. Muñoz Perea, 2005. Registration of bean golden yellow mosaic virus resistant germplasms PR9771-3-1, PR0247-49 and PR0157-4-1. Crop Sci 45: (in press).

  • Beaver, J., J.C. Rosas, J. Myers, J. Acosta, J.D. Kelly, S. Nchimbi-Msolla, R. Misangu, J. Bokosi, S. Temple, E. Arnaud-Santana & D.P. Coyne, 2003. Contributions of the Bean/Cowpea CRSP to cultivar and germplasm development in common bean. Field Crops Res 82: 87–102.

    Article  Google Scholar 

  • Beebe, S., 1994. Breeding for resistance to bean golden mosaic virus: History and perspective. In F. Morales (Ed.), Bean Golden Mosaic: Research Advances, p. 148–150. CIAT, Cali, Colombia.

  • Beebe, S.E. & F.A. Bliss, 1981. Root rot resistance in common bean germplasm of Latin American origin. Plant Dis 65: 485–489.

    Article  Google Scholar 

  • Beebe, S., C. Cardona, O. Díaz, F. Rodríguez, E. Mancia & S. Ajquejay, 1993. Development of common bean (Phaseolus vulgaris L.) lines resistant to the bean pod weevil, Apion godmani Wagner, in Central America. Euphytica 96: 83–88.

    Article  Google Scholar 

  • Beebe, S., J. Lynch, N. Galwey, J. Tohme & I. Ochoa, 1997. A geographical approach to identify phosphorus-efficient genotypes among landraces and wild ancestors of common bean. Euphytica 95: 325–336.

    Article  Google Scholar 

  • Beebe, S.E. & M. Pastor-Corrales, 1991. Breeding for disease resistance. In A. van Schoonhoven & O. Voysest (Eds.), Common Beans: Research for Crop Improvement, p. 561–617. CAB International, Wallingford, UK/CIAT, Cali, Colombia.

  • Beebe, S., I. Rao, H. Teran & C. Cajiao, 2004. Breeding concepts and approaches in food legumes: The example of the common bean. Abstract of paper presented at the “Second National Workshop on Food and Forage Legumes” Addis Ababa, Ethiopia, 22–26 September 2003.

  • Beebe, S., A. Velasco & F. Pedraza, 1999. Marcaje de genes para rendimiento en condiciones de alto y bajo fósforo en las accesiones de frijol G21212 y BAT 881. Poster presented in the VI Reunião Nacional de Pesquisa de Feijão, Salvador, Brazil, 21–26 November 1999.

  • Beebe, S., P.W. Skroch, J. Tohme, M.C. Duque, F. Pedraza & J. Nienhuis, 2000. Structure of genetic diversity among common bean landraces of Mesoamerican origin based on Correspondence Analysis of RAPD. Crop Sci 40: 264–273.

    Article  Google Scholar 

  • Bennett, C.W., 1971. The curly top disease of sugarbeet and other plants. Am Phytopathol Soc Monogr No. 7.

  • Bianchini, A., V. Moda-Cirino, N.S. Fonseca & F.F. Toledo, 1994. Genética de resistência ao vírus do mosaico dourado do feijoeiro. (Abstr) Fitopatol Bras 19: 329.

    Google Scholar 

  • Blair, M.W. & J.S. Beaver, 1992. Resistance to the sweetpotato whitefly (Bemisia tabaci), the vector of bean golden mosaic virus in dry beans. Annu Rpt Bean Improv Coop 35: 154–155.

    Google Scholar 

  • Blair, M.W., C. Cardona, C. Muñoz, H.F. Buendía & R. Garza, 2003a. Development of SCAR markers for Apion resistance. CIAT Annual Report, pp. 158–159. Cali, Colombia.

  • Blair, M.W., M.C. Muñoz & S.E. Beebe, 2002. QTL analysis of drought and abiotic stress tolerance in common bean RIL populations. In: Annual Report, Biotechnology Research Project, pp. 68–72. CIAT, Cali, Colombia.

  • Blair, M.W., F. Pedraza, H.F. Buendia, E. Gaitán-Solís, S.E. Beebe, P. Gepts & J. Tohme, 2003b. Development of a genome-wide anchored microsatellite map for common bean (Phaseolus vulgaris L.) Theor Appl Genet 107: 1362–1374.

  • Bliss, F.A., 1993. Breeding common bean for improved nitrogen fixation. Plant Soil 152: 71–79.

    Article  Google Scholar 

  • Boomstra, A.G. & F.A. Bliss, 1977. Inheritance of resistance to Fusarium solani f.sp. phaseoli in beans (Phaseolus vulgaris L.) and breeding strategy to transfer resistance. J Am Soc Hort Sci 102: 186–188.

    Google Scholar 

  • Brambl, R. & W. Gada, 1985. Plant seed lectins disrupt growth of germinating fungal spores. Physiol Plant 64: 402–408.

    Article  Google Scholar 

  • Broughton, W.J., G. Hernandez, M. Blair, S. Beebe, P. Gepts & J. Vanderleyden, 2003. Bean (Phaseolus spp.)-model food legumes. Plant Soil 252: 55–128.

    Article  CAS  Google Scholar 

  • Bueno, J.M., C. Cardona & C.M. Quintero, 1999. Comparison between two improvement methods to develop multiple insect resistance in common bean (Phaseolus vulgaris L.). Revista Colombiana de Entomología 25: 73–78.

    Google Scholar 

  • Busogoro, J.P., M.H. Jijakli & P. Lepoivre, 1999a. Identification of novel sources of resistance to angular leaf spot disease of common bean within the secondary gene pool. Plant Breed 118: 417–423.

    Article  Google Scholar 

  • Busogoro, J.P., M.H. Jijakli & P. Lepoivre, 1999b. Virulence variation and RAPD polymorphism in African isolates of Phaeoisariopsis griseola (Sacc.) Ferr., the causal agent of angular leaf spot of common bean. Eur J Plant Pathol 105: 559–569.

  • Caixeta, E.T., A. Borém, S. Azevedo Fagundes, S. Niestche, E.G. Barros & M.A. Moreira, 2003. Inheritance of angular leaf spot resistance in common bean line BAT 332 and identification of RAPD marker linked to the resistance gene. Euphytica 134: 297–303.

    Article  CAS  Google Scholar 

  • Campa, A., C. Rodríguez-Suárez, A. Pañeda, R. Giradles, & J.J. Ferreira, 2005. The bean anthracnose resístance gene Co-5 is located in linkage group B7. Annu Rep Bean Improv Coop 48: 68–69.

    Google Scholar 

  • Cardona, C. & J. Kornegay, 1999. Bean germplasm resources for insect resistance. In: S.L. Clement, & S.S. Quisenberry (Eds.), Global Plant Genetic Resources for Insect-Resistant Crops. CRC Press, Boca Raton, FL.

    Google Scholar 

  • Cardona, C., A. Frei, J.M. Bueno, J. Díaz, H. Gu & S. Dorn, 2002. Resistance to Thrips palmi (Thysanoptera: Thripidae) in beans. J Econ Entomol 95: 1066–1073.

    PubMed  Google Scholar 

  • Cardona, C., J.L. Kornegay, C.E. Posso, F. Morales & H. Ramírez, 1990. Comparative value of four arcelin variant in the development of dry bean lines resistant to the Mexican bean weevil. Entomol Exp Appl 56: 197–206.

    Article  Google Scholar 

  • Carvalho, G.A., T.J. Paula Jr., A.L. Alzate-Marin, S. Nietsche, E.G. Barros & M.A. Moreira, 1998. Herança da resistência da linhagem AND-277 de feijoeiro-comum à raça 63-23 de Phaeoisariopsis griseola e identificação de marcador RAPD ligado ao gene de resistência. Fitopatol Bras 23: 482–485.

    CAS  Google Scholar 

  • Castellanos, J.Z., J.J. Peña-Cabrales & J.A. Acosta-Gallegos, 1996. 15N-determined dinitrogen fixation capacity of common bean (Phaseolus vulgaris) cultivars under water stress. J Agric Sci 126: 327–333.

    Google Scholar 

  • Chowdbury, M.A., K. Yu & S.J. Park, 2002. Molecular mapping of root rot resistance in common bean. Annu Rep Bean Improv Coop 45: 96–97.

    Google Scholar 

  • CIAT, 1998. Annual report of the bean project.

  • Corrêa, R.X., M.R. Costa, P.I. Good-God, V.A. Ragagnin, F.G. Faleiro, M.A. Moreira & E.G. Barros, 2000. Sequence characterized amplified regions linked to rust resistance genes in the common bean. Crop Sci 40: 804–807.

    Article  Google Scholar 

  • Corrêa, R.X., P.I. Good-God, M.L.P. Oliveira, S. Niestche, M.A. Moreira & E.G. Barros, 2001. Herança da resistência à mancha-angular do feijoeiro e identificação de marcadores moleculares flanqueando o loco de resistência. Fitopatol Bras 26: 27–32.

    Google Scholar 

  • Coyne, D.P., J.R. Steadman, G. Godoy-Lutz, R. Gilbertson, E. Arnaud-Santana, J.S. Beaver & J.R. Myers, 2003. Contributions of the Bean/Cowpea CRSP to management of bean diseases. Field Crops Res 82: 155–162.

    Article  Google Scholar 

  • Cross, H., M.A. Brick, H.F. Schwartz, L.W. Panella & P.F. Byrne, 2000. Inheritance of resistance to Fusarium wilt in two common bean races. Crop Sci 40: 954–958.

    Article  Google Scholar 

  • Drijfhout, E., 1978. Genetic interaction between Phaseolus vulgaris and bean common mosaic virus with implications for strain identification and breeding resistance. Agricultural Research Reports, Vol. 872, pp. 1–98. Centre for Agriculture Publishing and Documentation, Wageningen, The Netherlands.

  • Elmer, J.S., G. Sunter, W.E. Gardiner, L. Brand, C.K. Browning, D.M. Bisaro & S.G. Rogers, 1988. Agrobacterium-mediated inoculation of plants with tomato golden mosaic virus DNAs. Plant Mol Biol Int J Mol Biol Biochem Genet Eng 10: 225–234.

    CAS  Google Scholar 

  • Ernest, E.G. & J.D. Kelly, 2004. The Mesoamerican anthracnose resistance gene Co-4 2 does not confer resistance in certain Andean backgrounds. Annu Rep Bean Improv Coop 47: 245–246.

    Google Scholar 

  • Ender, M. & J.D. Kelly, 2005. Identification of QTL associated with white mold resistance in common bean. Crop Sci 45: (in press).

  • Faleiro, F.G., W.S. Vinhadelli, V.A. Ragagnin, R.X. Corrêa, M.A. Moreira & E.G. Barros, 2000. RAPD markers linked to a block of genes confering rust resistance to the common bean. Genet Mol Biol 23: 399–402.

    Article  CAS  Google Scholar 

  • Fall, A.L., P.F. Byrne, J. Jung, D.P. Coyne, M.A. Brick & H.F. Schwartz, 2001. Detection and mapping of a major locus for fusarium wilt resistance in common bean. Crop Sci 41: 1494–1498.

    Article  Google Scholar 

  • Fernandes, G.W., 1990. Hypersensitivity: A neglected plant resistance mechanism against insect herbivores. Environ Entomol 19: 1173–1182.

    Google Scholar 

  • Ferreira, C.F., A. Borém, G.A. Carvalho, S. Nietsche, T.J. Paula Jr., E.G. Barros & M.A. Moreira, 2000. Inheritance of angular leaf spot resistance in common bean and identification of a RAPD marker linked to a resistance gene. Crop Sci 40: 1130–1133.

    Article  CAS  Google Scholar 

  • Ferrier-Cana, E., V. Geffroy, C. Macadre, F. Creusot, P. Imbert-Bollore, M. Sevignac & T. Langin, 2003. Characterization of expressed NBS-LRR resistance gene candidates from common bean. Theor Appl Genet 106: 251–261.

    CAS  PubMed  Google Scholar 

  • Fourie, D. & L. Herselman, 2002. Breeding for common blight resistance in dry beans in South Africa. Annu Rep Bean Improv Coop 45: 50–51.

    Google Scholar 

  • Fourie, D., P.N. Miklas & H.M. Ariyarathne, 2004. Genes conditioning halo blight resistance to races 1, 7, and 9 occur in a tight cluster. Annu Rep Bean Improv Coop 47: 103–104.

    Google Scholar 

  • Frahm, M.A., J.C. Rosas, N. Mayek-Pérez, E. López-Salinas, J.A. Acosta-Gallegos & J.D. Kelly, 2004. Breeding beans for resistance to terminal drought in the lowland tropics. Euphytica 136: 223–232.

    Article  Google Scholar 

  • Frei, A., M.W. Blair, C. Cardona, S.E. Beebe, H. Gu & S. Dorn, 2005. QTL mapping of resistance to Thrips palmi Karny in common bean. Crop Sci 45: 379–387.

    Article  CAS  Google Scholar 

  • Frei, A., J.M. Bueno, J. Diaz-Montano, H. Gu, C. Cardona & S. Dorn, 2004. Tolerance as a mechanism of resistance to Thrips palmi in common beans. Entomol Exp Appl 112: 73–80.

    Article  Google Scholar 

  • Frei, A., H. Gu, J.M. Bueno, C. Cardona & S. Dorn, 2003. Antixenosis and antibiosis in the resistance of bean plants to Thrips palmi Karny (Thysanoptera: Thripidae). J Econ Entomol 96: 1577–1584.

    Article  PubMed  Google Scholar 

  • Freyre, R., P. Skroch, V. Geffroy, A.F. Adam-Blondon, A. Shirmohamadali, W. Johnson, V. Llaca, R. Nodari, P. Pereira, S.M. Tsai, J. Tohme, M. Dron, J. Nienhuis, C. Vallejos & P. Gepts, 1998. Towards an integrated linkage map of common bean. 4. Development of a core map and alignment of RFLP maps. Theor Appl Genet 97: 847–856.

    Article  CAS  Google Scholar 

  • Galindo, L., M.W. Blair, S. Beebe, M. Ishitani & J. Tohme, 2003. Development of a molecular marker: DREB for drought tolerance in common bean. In: Annual Report, Biotechnology Research Project, pp. 177–179. CIAT, Cali, Colombia.

  • Gálvez, G.E. & F.J. Morales, 1989. Whitefly-transmitted viruses. In: H.F. Schwartz & M.A. Pastor-Corrales (Eds.), Bean Production Problems in the Tropics, p. 379–408. CIAT, Cali, Colombia.

  • Galwey, N.W. & A.M. Evans, 1982. The inheritance of resistance to Empoasca kraemeri Ross and Moore in the common bean, Phaseolus vulgaris L. Euphytica 31: 933–952.

    Article  Google Scholar 

  • Garza, R., C. Cardona & S.P. Singh, 1996. In: heritance of resistance to the bean-pod weevil (Apion godmani Wagner) in common beans from Mexico. Theor Appl Genet 92: 357–362.

    Article  Google Scholar 

  • Garza, R., J. Vera, C. Cardona, N. Barbcenas & S.P. Singh, 2001. Hypersensitive response of beans to Apion godmani (Coleoptera: Curculionidae). J Econ Entomol 94: 958–962.

    CAS  PubMed  Google Scholar 

  • Geffroy, V., F. Creusot, J. Falquet, M. Sévignac, A.F. Adam-Blondon, H. Bannerot, P. Gepts & M. Dron, 1998. A family of LRR sequences at the Co-2 locus for anthracnose resistance in Phaseolus vulgaris and its potential use in marker-assisted selection. Theor Appl Genet 96: 494–502.

    Article  CAS  Google Scholar 

  • Geffroy, V., M. Sévignac, J. De Oliveira, G. Fouilloux, P. Skroch, P. Thoquet, P. Gepts, T. Langin & M. Dron, 2000. In: heritance of partial resistance against Colletotrichum lindemuthianum in Phaseolus vulgaris and co-localization of QTL with genes involved in specific resistance. Mol Plant Micr Inter 13: 287–296.

    CAS  Google Scholar 

  • Geffroy, V., D. Sicard, J.C. De Oliveira, M. Sévignac, M. Cohen, P. Gepts, C. Neema, T. Langin & M. Dron, 1999. Identification of an ancestral resistance gene cluster involved in the coevolution process between Phaseolus vulgaris and its fungal pathogen Colletotrichum lindemuthianum. Mol Plant Micr Inter 12: 774–784.

    CAS  Google Scholar 

  • Gepts, P., 1999. Development of an integrated linkage map. In: S.P. Singh (Ed.), Developments in Plant Breeding, Common Bean Improvement in the Twenty-First Century, pp. 53–91. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Gilmore, B. & J.R. Myers, 2004. A preliminary molecular map for Phaseolus coccineus. Annu Rep Bean Improv Coop 47: 87–88.

    Google Scholar 

  • Guzmán, P., R.L. Gilbertson, R. Nodari, W.C. Johnson, S.R. Temple, D. Mandala, A.B.C. Mkandawire & P. Gepts, 1995. Characterization of variability in the fungus Phaeoisariopsis griseola suggests coevolution with the common bean (Phaseolus vulgaris). Phytopathology 85: 600–607.

    Google Scholar 

  • Gyorgyey, J., J.D. Vaubert, J.I. Jimenez-Zurdo, C. Charon, L. Troussard, A. Kondorosi & E. Kondorosi, 2000. Analysis of Medicago truncatula nodule expressed sequence tags. Mol Plant Micro Inter 13: 62–71.

    CAS  Google Scholar 

  • Haley, S.D., L. Afanador & J.D. Kelly, 1994a. Selection for monogenic pest traits with coupling and repulsion phase RAPD markers. Crop Sci 34: 1061–1066.

    Article  Google Scholar 

  • Haley, S.D., L. Afanador & J.D. Kelly, 1994b. Identification and application of a random amplified polymorphic DNA marker for the I gene (potyvirus resistance) in common bean. Phytopathology 84: 157–160.

    CAS  Google Scholar 

  • Haley, S.D., L.K. Afanador, P.N. Miklas, J.R. Stavely & J.D. Kelly, 1994c. Heterogeneous inbred populations are useful as sources of near-isogenic lines for RAPD marker localization. Theor Appl Genet 88: 337–342.

    Article  CAS  Google Scholar 

  • Haley, S.D., P.N. Miklas, J.R. Stavely, J. Byrum & J.D. Kelly, 1993. Identification of RAPD markers linked to a major rust resistance gene block in common bean. Theor Appl Genet 86: 505–512.

    Article  CAS  Google Scholar 

  • Hangen, L.A. & M.R. Bennink, 2003. Consumption of black beans and navy beans (Phaseolus vulgaris) reduced azoxymethane-induced colon cancer in rats. Nutr Cancer 44: 60–65.

    Google Scholar 

  • Hu, J. & B.A. Vick, 2003. Target region amplified polymorphism: A novel marker technique for plant genotyping. Plant Mol Biol Rep 21: 1–6.

    CAS  Google Scholar 

  • Ishitani, M., I. Rao, P. Wenzl, S. Beebe & J. Tohme, 2004. Integration of genomics approach with traditional breeding towards improving abiotic stress adaptation: Drought and aluminum toxicity as case studies. Field Crop Res 90: 35–45.

    Article  Google Scholar 

  • Islam, F.M.A., K.E. Basford, R.J. Redden, C. Jara & S. Beebe, 2002. Patterns of resistance to angular leaf spot, anthracnose and common bacterial blight in common bean germplasm. Aust J Expt Agric 42: 481–490.

    Article  Google Scholar 

  • Johnson, W.C., P. Guzman, D. Mandala, A.B.C. Mkandawire, S. Temple, R.L. Gilbertson & P. Gepts, 1997. Molecular tagging of the bc-3 gene for introgression into Andean common bean. Crop Sci 37: 248–254.

    Article  CAS  Google Scholar 

  • Johnson, E., P.N. Miklas, J.R. Stavely & J.C. Martinez-Cruzado, 1995. Coupling- and repulsion-phase RAPDs for marker-assisted selection of PI 181996 rust resistance in common bean. Theor Appl Genet 90: 659–664.

    Article  Google Scholar 

  • Jung, G., H.M. Ariyarathne, D.P. Coyne & J. Nienhuis, 2003. Mapping QTL for bacterial brown spot resistance under natural infection in field and seedling stem inoculation in growth chamber in common bean. Crop Sci 43: 350–357.

    Article  CAS  Google Scholar 

  • Jung, G., D.P. Coyne, J.M. Bokosi, J.R. Steadman & J. Nienhuis, 1998. Mapping genes for specific and adult plant resistance to rust and abaxial leaf pubescence and their genetic relationship using Random Amplified Polymorphic DNA (RAPD) markers in common bean. J Am Soc Hort Sci 123: 859–863.

    CAS  Google Scholar 

  • Jung, G., D.P. Coyne, P. Skroch, J. Nienhuis, E. Arnaud-Santana, J. Bokosi, H. Ariyarathne, J. Steadman, J. Beaver & S. Kaeppler, 1996. Molecular markers associated with plant architecture and resistance to common blight, web blight, and rust in common beans. J Am Soc Hort Sci 121: 794–803.

    CAS  Google Scholar 

  • Jung, G., P. Skroch, D.P. Coyne, J. Nienhuis, H. Ariyarathne, S. Kaeppler & M. Bassett, 1997. Molecular-marker-based genetic analysis of tepary-bean-derived common bacterial blight resistance in different developmental stages of common bean. J Am Soc Hort Sci 122: 329–337.

    CAS  Google Scholar 

  • Jung, G., P.W. Skroch, J. Nienhuis, D.P. Coyne, E. Arnaud-Santana, H.M. Ariyarathne & J.M. Marita, 1999. Confirmation of QTL associated with common bacterial blight resistance in four different genetic backgrounds in common bean. Crop Sci 39: 1448–1455.

    Article  CAS  Google Scholar 

  • Kelly, J.D., 1997. A review of varietal response to bean common potyvirus in Phaseolus vulgaris. Plant Varieties Seeds 10: 1–6.

    Google Scholar 

  • Kelly, J.D., L. Afanador & S.D. Haley, 1995. Pyramiding genes for resistance to bean common mosaic virus. Euphytica 82: 207–212.

    Article  Google Scholar 

  • Kelly, J.D., P. Gepts, P.N. Miklas & D.P. Coyne, 2003. Tagging and mapping of genes and QTL and molecular-marker assisted selection for traits of economic importance in bean and cowpea. Field Crops Res 82: 135–154.

    Article  Google Scholar 

  • Kelly, J.D., G.L. Hosfield, G.V. Varner, M.A. Uebersax, S.D. Haley & J. Taylor, 1994. Registration of ‘Raven’ black bean. Crop Sci 34: 1406–1407.

    Article  Google Scholar 

  • Kelly, J.D. & P.N. Miklas, 1998. The role of RAPD markers in breeding for disease resistance in common bean. Mol Breed 4: 1–11.

    Article  CAS  Google Scholar 

  • Kelly, J.D. & P.N. Miklas, 1999. Marker-assisted selection. In: S. Singh (Ed.), Common Bean Improvement in the Twenty-First Century, p. 93–123. Kluwer Academic Publishers, The Netherlands.

    Google Scholar 

  • Kelly, J.D. & V.A. Vallejo, 2004. A comprehensive review of the major genes conditioning resistance to anthracnose in common bean. Hortscience 39:1196–1207.

    CAS  Google Scholar 

  • Kipe-Nolt, J.A., H. Vargas & K.E. Giller, 1993. Nitrogen fixation in breeding lines of Phaseolus vulgaris L. Plant Soil 152: 103–106.

    Article  Google Scholar 

  • Kolkman, J.M. & J.D. Kelly, 2002. Agronomic traits affecting resistance to white mold in common bean. Crop Sci 42: 693–699.

    Article  Google Scholar 

  • Kolkman, J.M. & J.D. Kelly, 2003. QTL conferring resistance and avoidance to white mold in common bean. Crop Sci 43: 539–548.

    Article  CAS  Google Scholar 

  • Kornegay, J. & C. Cardona, 1991. Breeding for insect resistance in beans. In: A. Schoonhoven & O. van and Voysest (Eds.), Common Beans: Research for Crop Improvement, pp. 619–648.

  • Kornegay, J., C. Cardona & C.E. Posso, 1993. Inheritance of resistance to Mexican bean weevil in common bean, determined by bioassay and biochemical tests. Crop Sci 33: 589–594.

    Article  CAS  Google Scholar 

  • Kornegay, J., C. Cardona, J. van Esch & M. Alvarado, 1989. Identification of common bean lines with ovipositional resistance to Empoasca kraemeri (Homoptera: Cicadellidae). J Econ Entomol 82: 649–654.

    Google Scholar 

  • Kornegay, J. & S.R. Temple, 1986. Inheritance and combining ability of leafhopper defense mechanisms in common bean. Crop Sci 26: 1153–1158.

    Article  Google Scholar 

  • Kyle, M.M. & R. Provvidenti, 1993. Inheritance of resistance to potyviruses in Phaseolus vulgaris L. II. Linkage relations and utility of a dominant gene for lethal systemic necrosis to soybean mosaic virus. Theor Appl Genet 86: 189–196.

    Google Scholar 

  • Lamppa, R.S., P.L. Gross & L.E. del Rio, 2002. Races of Pseudomonas syringae pv. phaeolicola in North Dakota. Annu Rep Bean Improv Coop 45: 104–105.

    Google Scholar 

  • Larsen, R.C. & P.N. Miklas, 2004. Generation and molecular mapping of a SCAR marker linked with the Bct gene for resistance to beet curly top virus in common bean. Phytopathology 94: 320–325.

    CAS  PubMed  Google Scholar 

  • Larsen, R.C., P.N. Miklas, K.L. Druffel & S.D. Wyatt, 2005. NL-3K isolate is a stable and naturally occurring interspecific recombinant derived from Bean common mosaic necrosis virus and Bean common mosaic virus. Phytopathology (in press).

  • Liao, H., X. Yan, G. Rubio, S.E. Beebe, M.W. Blair & J.P. Lynch, 2004. Basal root gravitropism and phosphorus acquisition efficiency in common bean. Funct Plant Biol 31: 1–12.

    Article  Google Scholar 

  • López, C.E., I.F. Acosta, C. Jara, F. Pedraza, E. Gaitán-Solís, G. Gallego, S. Beebe & J. Tohme, 2003. Identifying resistance gene analogs associated with resistances to different pathogens in common bean. Phytopathology 93: 88–95.

    PubMed  Google Scholar 

  • Lynch, J.P. & S.E. Beebe, 1995. Adaptation of beans (Phaseolus vulgaris L.) to low phosphorus availability. Hortscience. 30: 1165–1171.

    CAS  Google Scholar 

  • Mahuku, G., C. Jara, C. Cajiao & S. Beebe, 2003. Sources of resistance to angular leaf spot (Phaeoisariopsis griseola) in common bean core collection, wild Phaseolus vulgaris and secondary gene pool. Euphytica 130: 303–313.

    Article  Google Scholar 

  • Mahuku, G., C. Jara, J.B. Cuasquer & G. Castellanos, 2002. Genetic variability within Phaeoisariopsis griseola from Central America and its implications for resistance breeding of common bean. Plant Pathology 51: 594–604.

    Article  Google Scholar 

  • Mahuku, G., C. Montoya, M.A. Henríquez, C. Jara, H. Teran & S. Beebe, 2004. Inheritance and characterization of angular leaf spot resistance gene present in common bean accession G 10474 and identification of an AFLP marker linked to the resistance gene. Crop Sci 44: 1817–1824.

    Article  CAS  Google Scholar 

  • Mayek-Pérez, N., C. López-Castaneda, E. López-Salinas & J.A. Acosta-Gallegos, 2001. Inheritance of genetic resistence to Macrophomina phaseolina (Tassi) Goid in common bean. Agrociencia 35: 637–648.

    Google Scholar 

  • McKern, N.M., G.I. Mink, O.W. Barnett, A. Mishra, L.A. Whittaker, M.J. Silbernagel, C.W. Ward & D.D. Shukla, 1992. Isolates of bean common mosaic virus comprising two distinct potyviruses. Phytopathology 82: 923–928.

    CAS  Google Scholar 

  • Melotto, M., L. Afanador & J.D. Kelly, 1996. Development of a SCAR marker linked to the I gene in common bean. Genome 39: 1216–1219.

    CAS  PubMed  Google Scholar 

  • Melotto, M., R.S. Balardin & J.D. Kelly, 2000. Host–pathogen interaction and variability of Colletotrichum lindemuthianum. In: D. Prusky, S. Freeman & M.B. Dickman (Eds.), Colletotrichum Host Specificity, Pathology, and Host–Pathogen Interaction, pp. 346–361. APS Press, St. Paul, MN.

  • Méndez-Vigo, B., C. Rodríguez-Suárez, A. Pañeda, J.J. Ferreira & R. Giraldez, 2005. Molecular markers and allelic relationships of anthracnose resistance gene cluster B4 in common bean. Euphytica 141: 237–245.

    Article  CAS  Google Scholar 

  • Mienie, C.M.S., M.M. Liebenberg, Z.A. Pretorius & P.N. Miklas, 2005. SCAR markers linked to the Phaseolus vulgaris rust resistance gene Ur-13. Theor Appl Genet (in press).

  • Miklas, P.N., 2005. List of DNA SCAR markers linked with disease resistance traits in bean. http://www.usda.prosser.wsu.edu/miklas/Scartable3.pdf.

  • Miklas, P.N., L. Afanador & J.D. Kelly, 1996a. Recombination-facilitated RAPD marker-assisted selection for disease resistance in common bean. Crop Sci 36: 86–90.

    Article  Google Scholar 

  • Miklas, P.N. & K.M. Bosak, 2004. Marker-assisted backcrossing of QTL for resistance to Sclerotinia white mold in pinto bean. Agron Abstr, Madison, WI.

  • Miklas, P.N., D.P. Coyne, K.F. Grafton, N. Mutlu, J. Reiser, D.T. Lindgren & S.P. Singh, 2003a. A major QTL for common bacterial blight resistance derives from the common bean great northern landrace cultivar Montana No. 5. Euphytica 131: 137–146.

    Article  CAS  Google Scholar 

  • Miklas, P.N., R. Delorme & R.H. Riley, 2003b. Identification of QTL conditioning resistance to white mold in a snap bean population. J Am Soc Hort Sci 128: 564–570.

    CAS  Google Scholar 

  • Miklas, P.N., K.F. Grafton, D. Hauf & J.D. Kelly, 2005a. Registration of pinto bean germplasm lines USPT-WM-1 and USPT-WM-2 with partial resistance to white mold. Annu Rep Bean Improv Coop 48: 190–191.

    Google Scholar 

  • Miklas, P.N., K.F. Grafton, J.D. Kelly, J.R. Steadman & M.J. Silbernagel, 1998a. Registration of four white mold resistant dry bean germplasm lines: I9365-3, I9365-5, I9365-31, and 92BG-7. Crop Sci 38: 1728.

    Article  Google Scholar 

  • Miklas, P.N., A.N. Hang, J.D. Kelly, C.A. Strausbaugh & R.L. Forster, 2002a. Registration of three kidney bean germplasm lines resistant to bean common mosaic virus and necrosis potyviruses: USLK-2 light red kidney, USDK-4 dark red kidney, and USWK-6 white kidney. Crop Sci 42: 674–675.

    Article  Google Scholar 

  • Miklas, P.N., D. Hauf, R. Henson & K.F. Grafton, 2004. Inheritance of ICA Bunsi-derived resistance in a navy × pinto bean cross. Crop Sci. 44: 1584–1588.

    Article  Google Scholar 

  • Miklas, P.N., E. Johnson, V. Stone, J.S. Beaver, C. Montoya & M. Zapata, 1996b. Selective mapping of QTL conditioning disease resistance in common bean. Crop Sci 36: 1344–1351.

    Article  CAS  Google Scholar 

  • Miklas, P.N., W.C. Johnson, R. Delorme, R.H. Riley & P. Gepts, 2001. Inheritance and QTL analysis of physiological resistance to white mold in common bean G122. Crop Sci 41: 309–315.

    Article  Google Scholar 

  • Miklas, P.N. & J.D. Kelly, 2002. Registration of two cranberry bean germplasm lines resistant to bean common mosaic and necrosis potyviruses: USCR-7 and USCR-9. Crop Sci 42: 673–674.

    Article  Google Scholar 

  • Miklas, P.N., J.D. Kelly, & S.P. Singh, 2003c. Registration of anthracnose-resistant pinto bean germplasm line USPT-ANT-1. Crop Sci 43: 1889–1890.

    Article  Google Scholar 

  • Miklas, P.N., R.C. Larsen, R. Riley & J.D. Kelly, 2000a. Potential marker-assisted selection for bc-1 2 gene for resistance to bean common mosaic potyvirus in common bean. Euphytica 116: 211–219.

    Article  CAS  Google Scholar 

  • Miklas, P.N., M.A. Pastor-Corrales, G. Jung, D.P. Coyne, J.D. Kelly, P.E. McClean & P. Gepts, 2002b. Comprehensive linkage map of bean rust resistance genes. Annu Rep Bean Improv Coop 45: 125–129.

    Google Scholar 

  • Miklas, P.N., J.R. Smith, R. Riley, K.F. Grafton, S.P. Singh, G. Jung & D.P. Coyne, 2000b. Marker-assisted breeding for pyramided resistance to common bacterial blight in common bean. Annu Rep Bean Improv Coop 43: 39–40.

    Google Scholar 

  • Miklas, P.N., J.R. Smith & S.P. Singh, 2005b. Release of USDK-CBB-15 dark red kidney bean germplasm line with improved resistance to common bacterial blight. Annu Rep Bean Improv Coop 48: 192–193.

    Google Scholar 

  • Miklas, P.N., J.R. Stavely & J.D. Kelly, 1993. Identification and potential use of a molecular marker for rust resistance in common bean. Theor Appl Genet 85: 745–749.

    Article  CAS  Google Scholar 

  • Miklas, P.N., V. Stone, M.J. Daly, J.R. Stavely, J.R. Steadman, M.J. Bassett, R. Delorme & J.S. Beaver, 2000c. Bacterial, fungal, and viral disease resistance loci mapped in a recombinant inbred common bean population (‘Dorado’/XAN 176). J Am Soc Hort Sci 125: 476–481.

    CAS  Google Scholar 

  • Miklas, P.N., V. Stone, C.A. Urrea, E. Johnson & J.S. Beaver, 1998b. Inheritance and QTL analysis of field resistance to ashy stem blight. Crop Sci 38: 916–921.

    Article  Google Scholar 

  • Mkandawire, A.B.C., R.B. Mabagala, P. Guzman, P. Gepts & R.L. Gilbertson, 2004. Genetic diversity and pathogenic variation of common blight bacteria (Xanthomonas campestris pv. phaseoli and X. campestris pv. phaseoli var. fuscans) suggests coevolution with the common bean. Phytopathology 94: 593–603.

    CAS  PubMed  Google Scholar 

  • Mmbaga, M., J.R. Steadman & J.R. Stavely, 1996. The use of host resistance in disease management of rust in common bean. Integrated Pest Manag Rev 1: 191–200.

    Article  Google Scholar 

  • Mukeshimana, G., A. Pañeda, C. Rodriguez, J.J. Ferreira, R. Giraldez & J.D. Kelly, 2005. Markers linked to the bc-3 gene conditioning resistance to bean common mosaic potyviruses in common bean. Euphytica 144: 291–299.

    Article  Google Scholar 

  • Murray, J.D., T.E. Michaels, C. Cardona, A.W. Schaafsma & K.P. Pauls, 2004a. Quantitative trait loci for leafhopper (Empoasca fabae and Empoasca kraemeri) resistance and seed weight in the common bean. Plant Breed 123: 474–479.

    Article  CAS  Google Scholar 

  • Murray, J.D., T.E. Michaels, K.P. Pauls, C. Cardona & A.W. Schaafsma, 2004b. Yield and insect injury in leafhopper (Empoasca fabae Harris and Empoasca kraemeri Ross & Moore) infested dry beans in Ontario and Colombia. Can J Plant Sci 84: 891–900.

    Google Scholar 

  • Murray, J.D., T.E. Michaels, K.P. Pauls & A.W. Schaafsma, 2001. Determination of traits associated with leafhopper (Empoasca fabae and Empoasca kraemeri) resistance and dissection of leafhopper damage symptoms in the common bean (Phaseolus vulgaris). Ann Appl Biol 139: 319–327.

    Google Scholar 

  • Mutlu, N., P.N. Miklas, J. Reiser & D.P. Coyne, 2005a. Backcross breeding for improved resistance to common bacterial blight in pinto bean (Phaseolus vulgaris L.). Plant Breed 124: 282–287.

    Article  Google Scholar 

  • Mutlu, N., P.N. Miklas, J.R. Steadman, A.V. Vidaver, D. Lindgren, J. Reiser & M.A. Pastor-Corrales, 2005b. Registration of pinto bean germplasm line ABCP-8 with resistance to common bacterial blight. Crop Sci 45: 806.

    Article  Google Scholar 

  • Navarrete-Maya, R.E. Trejo-Albarran, J. Navarrete-Maya, J.M. Prudencio Sains & J.A. Acosta-Gallegos, 2002. Reaction of bean genotypes to Fusarium sp. and Rhizoctonia solani in central Mexico. Annu Rep Bean Improv Coop 45: 154–155.

    Google Scholar 

  • Navarro, F., M. Sass & J. Nienhuis, 2003. Identification and mapping bean root rot resistance in a population of Mesoamerican × Andean origin. Annu Rep Bean Improv Coop 46: 213–214.

    Google Scholar 

  • Nietsche, S., A. Borem, G.A. Carvalho, R.C. Rocha, T.J. Paula, E.G. Barros & M.A. Moreira, 2000. RAPD and SCAR markers linked to a gene conferring resistance to angular leaf spot in common bean. J Phytopathol 148: 117–121.

    Article  CAS  Google Scholar 

  • Nodari, R.O., S.M. Tsai, P. Guzman, R.L. Gilbertson & P. Gepts, 1993. Towards an integrated linkage map of common bean. III. Mapping genetic factors controlling host–bacteria interactions. Genetics 134: 341–350.

    CAS  PubMed  Google Scholar 

  • Olaya, G., G.S. Abawi & N.F. Weeden, 1996. Inheritance of the resistance to Macrophomina phaseolina and identification of RAPD markers linked to the resistance genes in beans. Phytopathology 86: 674–679.

    CAS  Google Scholar 

  • Oliveira, E.J., A.L. Alzate-Marin, C.L.P. Melo, A. Borém, E.G. Barros & M.A. Moreira, 2002. Backcross assisted by RAPD markers for the introgression of angular leaf spot resistance genes in common bean cultivars. Annu Rep Bean Improv Coop 45: 142–143.

    Google Scholar 

  • Osborn, T.C., T. Blake, P. Gepts & F. Bliss, 1986. Bean Arcelin 2. Genetic variation, inheritance and linkage relationships of a novel seed protein of Phaseolus vulgaris L. Theor Appl Genet 71: 847–855.

    Article  CAS  Google Scholar 

  • Osborn, T.C., D.C. Alexander, S. Sun, C. Cardona & F. Bliss, 1988. Insecticidal activity and lectin homology of arcelin seed protein. Science 240: 207–210.

    CAS  Google Scholar 

  • Osorno, J.M., J.S. Beaver, F.H. Ferwerda & P.N. Miklas, 2003. Two genes from Phaseolus coccineus L. confer resistance to bean golden yellow mosaic virus. Annu Rep Bean Improv Coop 46: 147–148.

    Google Scholar 

  • Park, S.O., D.P. Coyne, J.R. Steadman, K.M. Crosby & M.A. Brick, 2004. RAPD and SCAR markers linked to the Ur-6 Andean gene controlling specific rust resistance in common bean. Crop Sci 44: 1799–1807.

    Article  CAS  Google Scholar 

  • Park, S.O., D.P. Coyne, J.R. Steadman & P.W. Skroch, 2001. Mapping of QTL for resistance to white mold diseases in common bean. Crop Sci 41: 1253–1262.

    Article  CAS  Google Scholar 

  • Park, S.O., D.P. Coyne, J.R. Steadman & P.W. Skroch, 2003. Mapping of the Ur-7 gene for specific resistance to rust in common bean. Crop Sci 43: 1470–1476.

    Article  CAS  Google Scholar 

  • Pastor-Corrales, M.A., 2003. Sources, genes for resistance, and pedigrees of 52 rust and mosaic resistant dry bean germplasm lines released by the USDA Beltsville Bean Project in collaboration with Michigan, Nebraska, and North Dakota Agricultural Experiment Stations. Annu Rpt Bean Improv Coop 46: 235–241.

    Google Scholar 

  • Pastor-Corrales, M.A. & C. Jara, 1995. La evolución de Phaeoisariopsis griseola con el frijol común en América Latina. Fitopatol Colomb 19: 15–24.

    Google Scholar 

  • Pastor-Corrales, M.A., C. Jara & S.P. Singh, 1998. Pathogenic variation in, sources of, and breeding for resistance to Phaeoisariopsis griseola causing angular leaf spot in common bean. Euphytica 103: 161–171.

    Article  Google Scholar 

  • Patterson, A.H., 1995. Molecular dissection of quantitative traits: Progress and prospects. Genome Res 5: 321–333.

    Google Scholar 

  • Petzoldt, R. & M.H. Dickson, 1996. Straw test for resistance to white mold in beans. Annu Rep Bean Improv Coop 39: 142–143.

    Google Scholar 

  • Pillemer, E.A. & W.M. Tingey, 1976. Hooked trichomes: A physical barrier to a major agricultural pest. Science 193: 482–474.

    PubMed  CAS  Google Scholar 

  • Pyndji, M.M. & R. Trutmann, 1992. Managing angular leaf spot on common bean in Africa by supplementing farmer mixtures with resistant varieties. Plant Dis 76: 1144–1147.

    Article  Google Scholar 

  • Queiroz, V.T., C.S. Sousa, M.R. Costa, D.A. Sanglad, K.M.A. Arruda, T.L.P.O. Souza, V.A. Ragagnin, E.G. Barros & M.A. Moreira, 2004. Development of SCAR markers linked to common bean angular leaf spot resistance genes. Annu Rep Bean Improv Coop 47: 237–238.

    Google Scholar 

  • Ragagnin, V.A., D.A. Sanglard, T.L.P.O. de Souza, M.A. Moreira & E.G. de Barros, 2003. Simultaneous transfer of resistance genes for rust, anthracnose, and angular leaf spot to cultivar Perola assisted by molecular markers. Annu Rep Bean Improv Coop 46: 159–160.

    Google Scholar 

  • Ramirez-Vallejo, P. & J.D. Kelly, 1998. Traits related to drought resistance in common bean. Euphytica 99: 127–136.

    Article  Google Scholar 

  • Rao, I.M., 2001. Role of physiology in improving crop adaptation to abiotic stresses in the tropics: The case of common bean and tropical forages. In: M. Pessarakli (Ed.), Handbook of Plant and Crop Physiology, pp. 583–613. Marcel Dekker, New York, USA.

    Google Scholar 

  • Rivkin, M.I., C.E. Vallejos & P.E. McClean, 1999. Disease-resistance related sequences in common bean. Genome 42: 41–47.

    Article  CAS  PubMed  Google Scholar 

  • Román-Avilés, B. & J.D. Kelly, 2005. Identification of quantitative trait loci conditioning resistance to Fusarium root rot in common beans. Crop Sci 45: in press.

  • Sandlin, C.M., J.R. Steadman, C.M. Araya & D.P. Coyne, 1999. Isolates of Uromyces appendiculatus with specific virulence to landraces of Phaseolus vulgaris of Andean origin. Plant Dis 83: 108–113.

    Google Scholar 

  • Santos, A.S., R.E. Bressan-Smith, M.G. Pereira, R. Rodrigues & C.F. Ferreira, 2003. Genetic linkage map of Phaseolus vulgaris and indentification of QTLs responsible for resistance to Xanthomonas axonopodis pv. phaseoli. Fitopatol Bras 28: 5–10.

    Google Scholar 

  • Santos-Filho, H.P., S. Ferraz & C. Vieira, 1976. Resisténcia à mancha-angular (Isariopsis griseola Sacc.) no feijoeiro comum (Phaseolus vulgaris L.). Rev Ceres 23: 226–230.

    Google Scholar 

  • Sartorato, A., S. Nietsche, E.G. Barros & M.A. Moreira, 2000. RAPD and SCAR markers linked to resistance gene to angular leaf spot in common beans. Fitopatol Bras 25: 637–642.

    CAS  Google Scholar 

  • Schneider, K.A., M.E. Brothers & J.D. Kelly, 1997a. Marker-assisted selection to improve drought tolerance in common bean. Crop Sci. 37: 51–60.

    Article  CAS  Google Scholar 

  • Schneider, K.A., K.F. Grafton & J.D. Kelly, 2001. QTL analysis of resistance to Fusarium root rot in bean. Crop Sci 41: 535–542.

    Article  CAS  Google Scholar 

  • Schneider, K.A., R. Rosales-Serna, F. Ibarra-Pérez, B. Cazares-Enriquez, J.A. Acosta-Gallegos, P. Ramirez-Vallejo, N. Wassimi & J.D. Kelly, 1997b. Improving common bean performance under drought stress. Crop Sci 37: 43–50.

    Article  Google Scholar 

  • Schoonhoven, A., C. Cardona & J. Valor, 1983. Resistance to the bean weevil and the Mexican bean weevil (Coleoptera: Bruchidae) in noncultivated common bean accessions. J Econ Entomol 76: 1255–1259.

    Google Scholar 

  • Schultz, H.K. & L.L. Dean, 1947. Inheritance of curly top disease reaction in the bean, Phaseolus vulgaris. J Am Soc Agron 39: 47–51.

    Google Scholar 

  • Schwartz, H.F., D.H. Casciano, J.A. Asenga & D.R. Wood, 1987. Field measurement of white mold effects upon dry beans with genetic resistance or upright plant architecture. Crop Sci 27: 699–702.

    Article  Google Scholar 

  • Schwartz, H.F., K. Otto, H. Terán & S.P. Singh, 2004. Inheritance of white mold resistance in the interspecific crosses of pinto bean cultivars Othello and Phaeolus coccineus L. accessions PI 433246 and PI 439534. Annu Rep Bean Imorov Coop 47: 279–280.

    Google Scholar 

  • Schwartz, H.F., M.A. Pastor-Corrales & S.P. Singh, 1982. New sources of resistance to anthracnose and angular leaf spot of beans (Phaseolus vulgaris L.). Euphytica 31: 741–754.

    Article  Google Scholar 

  • Silbernagel, M.J. & R.M. Hannan, 1992. Use of plant introductions to develop U.S. bean cultivars. In: H. Shands & L.E. Weisner (Eds.), Use of Plant Introductions in Cultivar Development. Part 2. CSSA Special Publication 20, pp. 1–8. CSSA, Madison, WI.

  • Singh, S.P., 1995. Selection for water stress tolerance interracial populations of common bean. Crop Sci 35: 118–124.

    Article  Google Scholar 

  • Singh, S.P., C. Cardona, F.J. Morales, M.A. Pastor-Corrales & O. Voysest, 1998. Gamete selection for upright carioca bean with resistance to five diseases and a leafhopper. Crop Sci 38: 666–672.

    Article  Google Scholar 

  • Singh, S.P., P. Gepts & D.G. Debouck, 1991. Races of common bean (Phaseolus vulgaris, Fabaceae). Econ Bot 45: 379–396.

    Google Scholar 

  • Singh, S.P., F.J. Morales, P.N. Miklas & H. Terán, 2000a. Selection for bean golden mosaic resistance in intra- and inter-racial bean populations. Crop Sci 40: 1565–1572.

    Article  Google Scholar 

  • Singh, S.P., F.J. Morales & H. Terán, 2000b. Registration of bean golden mosaic resistant dry bean germplasm GMR 1 and GMR 5. Crop Sci 40: 1836.

    Google Scholar 

  • Singh, S.P. & C.G. Muñoz, 1999. Resistance to common bacterial blight among Phaseolus species and common bean improvement. Crop Sci 39: 80–89.

    Article  Google Scholar 

  • Singh, S.P., C.G. Muñoz & H. Terán, 2001. Registration of common bacterial blight resistant dry bean germplasm VAX 1, VAX 3, and VAX 4. Crop Sci 41: 275–276.

    Article  Google Scholar 

  • Singh, S.P., H. Terán, J.A. Gutiérrez, M.A. Pastor-Corrales, H.F. Schwartz & F.J. Morales, 2003. Registration of A 339, MAR 1, MAR 2, and MAR 3 angular-leaf-spot and anthracnose-resistant germplasm. Crop Sci 43: 1886–1887.

    Article  Google Scholar 

  • Snapp, S., W. Kirk, B. Román-Avilés & J. Kelly, 2003. Root traits play a role in integrated management of Fusarium root rot in snap beans. Hortscience 38: 187–191.

    Google Scholar 

  • Snoeck, C., J. Vanderleyden & S. Beebe, 2003. Strategies for genetic improvement of common bean and rhizobia towards efficient interactions. Plant Breed Rev 23: 21–72.

    Google Scholar 

  • Sparvoli, F. & R. Bollini, 1998. Arcelin in wild bean (Phaseolus vulgaris L.) seeds: Sequence of arcelin 6 shows it is a member of the arcelin 1 and 2 subfamily. Gen Resources Crop Evol 45: 383–388.

    Article  Google Scholar 

  • Specht, J.E., D.J. Hume & S.V. Kumudini, 1999. Soybean yield potential – A genetic and physiological perspective. Crop Sci 39: 1560–1570.

    Article  Google Scholar 

  • Spence, N.J. & D.G.A. Walkey, 1995. Variation for pathogenicity among isolates of bean common mosaic virus in Africa and reinterpretation of the genetic relationship between cultivars of Phaseolus vulgaris and pathotypes of BCMV. Plant Pathol 44: 527–546.

    Google Scholar 

  • Sponchiado, B.N., J.W. White, J.A. Castillo & P.G. Jones, 1989. Root growth of four common bean cultivars in relation to drought tolerance in environments with contrasting soil types. Exp Agric 25: 249–257.

    Article  Google Scholar 

  • Stavely, J.R., 1984. Genetics of resistance to Uromyces phaseoli in a Phaseolus vulgaris line resistant to most races of the pathogen. Phytopathology 74: 339–344.

    Google Scholar 

  • Stavely, J.R., J.D. Kelly, K.F. Grafton, C.A. Mullins, A. Straw, R.T. McMillan Jr., J.S. Beaver, P.N. Miklas, J. Steinke, J.R. Steadman, D.P. Coyne, D.T. Lindgren & M.J. Silbernagel, 1997. Rust resistant bean germplasm releases, 1994–1996. Annu Rep Bean Improv Coop 40: 120–121.

    Google Scholar 

  • Stavely, J.R., R.T. McMillan, J.S. Beaver & P.N. Miklas, 2001. Release of three McCaslan type, indeterminate, rust and golden mosaic resistant snap bean germplasm lines BelDade RGMR 4, 5 and 6. Annu Rep Bean Improv Coop 44: 197–198.

    Google Scholar 

  • Stenger, D.C., G.N. Revington, M.C. Stevenson & D.M. Bisaro, 1991. Replicational release of geminivirus genomes from tandemly repeated copies: Evidence for rolling-circle replication of a plant viral DNA. Proc Natl Acad Sci USA 88: 8029–8033.

    CAS  PubMed  Google Scholar 

  • Strausbaugh, C.A., J.R. Myers, R.L. Forster & P.E. McClean, 1999. Bc-1 and Bc-u two loci controlling bean common mosaic virus resistance in common bean are linked. J Am Soc Hort Sci 124: 644–648.

    Google Scholar 

  • Sutton, L.A. & D.P. Coyne, 2002. Vegetable cultivar descriptions for North America: Bean-dry, lists 1–26 combined. Hortscience, http://cuke.hort.ncsu.edu/wehner/vegcult/beandry.html.

  • Tar’an, B., T.E. Michaels & K.P. Pauls, 2001. Mapping genetic factors affecting the reaction to Xanthomonas axonopodis pv. phaseoli in Phaseolus vulgaris L. under field conditions. Genome 44: 1046–1056.

    Article  CAS  Google Scholar 

  • Taylor, J.D., D.M. Teverson, M.A. Allen & M.A. Pastor-Corrales, 1996a. Identification and origin of races of Pseudomonas syringae pv. phaseolicola from Africa and other bean growing areas. Plant Pathol 45: 469–478.

    Article  Google Scholar 

  • Taylor, J.D., D.M. Teverson & J.H.C. Davis, 1996b. Sources of resistance to Pseudomonas syringae pv. phaseolicola races in Phaseolus vulgaris. Plant Pathol 45: 479–485.

    Article  Google Scholar 

  • Terán, H. & S.P. Singh, 2002. Comparison of sources and lines selected for drought resistance in common bean. Crop Sci 42: 64–70.

    Article  PubMed  Google Scholar 

  • Thomas, C.V. & J.G. Waines, 1984. Fertile backcross and allotetraploid plants from crosses between tepary beans and common beans. J Hered 75: 93–98.

    Google Scholar 

  • Toubart, P., A. Desiderio, G. Salvi, F. Cervone, L. Daroda & G. De Lorenzo, 1992. Cloning and characterization of the gene encoding the endopolygalacturonase-inhibiting protein (Pgip) of Phaseolus vulgaris L. Plant J 2: 367–373.

    CAS  PubMed  Google Scholar 

  • Tsai, S.M., R.O. Nodari, D.H. Moon, L.E.A. Camargo, R. Vencovsky & P. Gepts, 1998. QTL mapping for nodule number and common bacterial blight in Phaseolus vulgaris L. Plant Soil 204: 135–145.

    Article  CAS  Google Scholar 

  • Urrea, C.A., P.N. Miklas, J.S. Beaver & R.H. Riley, 1996. A codominant randomly amplified polymorphic DNA (RAPD) marker useful for indirect selection of BGMV resistance in common bean. J Am Soc Hort Sci 121: 1035–1039.

    CAS  Google Scholar 

  • Vadez, V., J.H. Lasso, D.P. Beck & J.J. Drevon, 1999. Variability of N2-fixation in common bean (Phaseolus vulgaris L.) under P deficiency is related to P use efficiency: N2-fixation tolerant to P deficiency. Euphytica 106: 231–242.

    Article  Google Scholar 

  • Vallad, G., M. Rivkin, C. Vallejos & P. McClean, 2001. Cloning and homology modelling of a Pto-like protein kinase family of common bean (Phaseolus vulgaris L.). Theor Appl Genet 103: 1046–1058.

    Article  CAS  Google Scholar 

  • Vallejos, C.E., J.J. Malandro, K. Sheehy & M.J. Zimmermann, 2000. Detection and cloning of expressed sequences linked to a target gene. Theor Appl Genet 101: 1109–1113.

    Article  CAS  Google Scholar 

  • VandenBosch, E. & G. Stacey, 2003. Summaries of legume genomics projects from around the globe. Community resources for crops and models. Plant Physiol 131: 840–865.

    Article  CAS  Google Scholar 

  • Vandemark, G.J. & P.N. Miklas, 2002. A fluorescent PCR assay for the codominant interpretation of a dominant SCAR marker linked to the virus resistance allele bc-1 2 in common bean. Mol Breed 10: 193–201.

    Article  CAS  Google Scholar 

  • Vandemark, G.J. & P.N. Miklas, 2005. Genotyping common bean for the potyvirus resistance alleles I and bc-1 2 with a multiplex real-time polymerase chain reaction assay. Phytopathology 95: 499–505.

    CAS  PubMed  Google Scholar 

  • Velez, J.J., M.J. Bassett, J.S. Beaver & A. Molina, 1998. Inheritance of resistance to bean golden mosaic virus in common bean. J Am Soc Hort Sci 123: 628–631.

    Google Scholar 

  • Wallace, D.H. & R.E. Wilkinson, 1975. Breeding for resistance in dicotyledonous plants to root rot fungi. In: G.W. Bruehll (Ed.), Biology and Control of Soil-Borne Plant Pathogens. American Phytopathological Society, St. Paul, MN.

  • Walter, M.H., J. Liu, C. Grand, C.J. Lamb & D. Hess, 1990. Bean-pathogenesis-related proteins deduced from elicitor-induced transcripts are members of a ubiquitous new class of conserved PR proteins including pollen allergens. Mol Gen Genet 222: 353–360.

    Article  CAS  PubMed  Google Scholar 

  • Webb, K.J., L. Skot, S. Mizen, M. Paniske, B. Jorgensen, M. Nicholson, A. Altman, M. Ziv & S. Izhar, 1999. Identification of genes expressed in roots and nodules of Lotus japonicus. In: Plant Biotechnology and In: Vitro Biology in the 21st Century, Vol. 36, pp. 227–229. Proceedings of the IXth International Congress of the International Association of Plant Tissue Culture and Biotechnology, Jerusalem, Israel, 14–19 June 1998. Current Plant Science and Biotechnology in Agriculture.

  • White, J.W., 1987. Preliminary results of the Bean International Drought Yield Trial (BIDYT). In: Proceedings of the International Bean Drought Workshop, 19–21 October 1987, p. 126–145. Cali, Colombia.

  • White, J.W., R. Ochoa, F. Ibarra & S.P. Singh, 1994. Inheritance of seed yield, maturity and seed weight of common bean (Phaseolus vulgaris L.) under semi-arid rainfed conditions. J Agric Sci 122: 265–273.

    Article  Google Scholar 

  • Wortmann, C.S., R.A. Kirkby, C.A. Eledu & D.J. Allen, 1998. Atlas of common bean (Phaseolus vulgaris L.) production in Africa. CIAT, Cali, Colombia.

  • Yan, X., S.E. Beebe & J.P. Lynch, 1995a. Genetic variation for phosphorus efficiency of common bean in contrasting soil types. II. Yield response. Crop Sci 35: 1094–1099.

    Article  Google Scholar 

  • Yan, X., H. Liao, S.E. Beebe, M.W. Blair & J.P. Lynch, 2004. Molecular mapping of QTLs associated with root hairs and acid exudation as related to phosphorus uptake in common bean. Plant and Soil 265: 17–29.

    Article  CAS  Google Scholar 

  • Yan, X., H. Liao, M.C. Trull, S.E. Beebe & J.P. Lynch, 2001. Induction of a major leaf acid phosphatase does not confer adaptation to low phosphorus availability in common bean. Plant Phys 125: 1–11.

    Article  Google Scholar 

  • Yan, X., J.P. Lynch & S.E. Beebe, 1995b. Genetic variation for phosphorus efficiency of common bean in contrasting soil types. I. Vegetative response. Crop Sci 35: 1086–1093.

    Article  Google Scholar 

  • Yan, X., J.P. Lynch & S.E. Beebe, 1996. Utilization of phosphorus substrates contrasting common bean genotypes. Crop Sci 36: 936–941.

    Article  Google Scholar 

  • Yencho, G.C., M.B. Cohen & P.F. Byrne, 2000. Applications of tagging and mapping insect resistance loci in plants. Annu Rev Entomol 45: 393–422.

    Article  CAS  PubMed  Google Scholar 

  • Young, R.A., M. Melotto, R.O. Nodari & J.D. Kelly, 1998. Marker assisted dissection of the oligogenic anthracnose resistance in common bean cultivar, G 2333. Theor Appl Genet 96: 87–94.

    Article  CAS  Google Scholar 

  • Yu, K., S.J. Park & V. Poysa, 2000. Marker-assisted selection of common beans for resistance to common bacterial blight: Efficiency and economics. Plant Breed 119: 411–415.

    Article  CAS  Google Scholar 

  • Yu, K., S.J. Park, B. Zhang, M. Haffner & V. Poysa, 2004. An SSR marker in the nitrate reductase gene of common bean is tightly linked to a major gene conferring resistance to common bacterial blight. Euphytica 138: 89–95.

    Article  CAS  Google Scholar 

  • Yu, Z.H., R.E. Stall & C.E. Vallejos, 1998. Detection of genes for resistance to common bacterial blight of beans. Crop Sci 38: 1290–1296.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phillip N. Miklas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miklas, P.N., Kelly, J.D., Beebe, S.E. et al. Common bean breeding for resistance against biotic and abiotic stresses: From classical to MAS breeding. Euphytica 147, 105–131 (2006). https://doi.org/10.1007/s10681-006-4600-5

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-006-4600-5

Key Words

Navigation