Skip to main content
Log in

Flow in a multi-branching vessel with compliant walls

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

The problem of fluid flow in a compliant-walled channel which branches into two or more daughters is considered with the aim of understanding blood flow through arterio-venous malformations (AVMs) in the brain. The outer walls of the channel are assumed for definiteness to behave as spring-back plates, whilst the divider is taken as rigid. The fluid is assumed to be incompressible and inviscid. When the Strouhal number is small (as occurs in practice in the brain), there are two main axial length scales, one much longer than the vessel width and the other comparable with the vessel width. Also, in the case of small wall displacements, one can analyse the local flow-structure interaction problem using a complex variable method. The flow shows markedly different qualitative features downstream of the branching, depending on the wall stiffness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Smith FT, Jones MA (2000) One-to-few and one-to-many branching tube flows. J Fluid Mech 423: 1–31

    Article  MATH  ADS  MathSciNet  Google Scholar 

  2. Smith FT, Jones MA (2003) AVM modelling by multi-branching tube flow: large flow rates and dual solutions. Math Med Biol 20: 183–204

    Article  MATH  Google Scholar 

  3. Smith FT, Ovenden NC, Franke PT, Doorly DJ (2003) What happens to pressure when a flow enters a side branch?. J Fluid Mech 479: 231–258

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. Smith FT, Purvis R, Dennis SCR, Jones MA, Ovenden NC, Tadjfar M (2003) Fluid flow through various branching tubes. J Eng Math 47: 277–298

    Article  MATH  MathSciNet  Google Scholar 

  5. Tadjfar M, Smith FT (2004) Direct simulations and modelling of basic three-dimensional bifurcating tube flows. J Fluid Mech 519: 1–32

    Article  MATH  ADS  MathSciNet  Google Scholar 

  6. Bowles RI, Dennis SCR, Purvis R, Smith FT (2005) Multi-branching flows from one mother tube to many daughters or to a network. Philos Trans R Soc A 363: 1045–1055

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. Pedley TJ (2003) Mathematical modelling of arterial fluid dynamics. J Eng Math 47: 419–444

    Article  MATH  MathSciNet  Google Scholar 

  8. Smith FT (1977) Steady motion through a branching tube. Proc R Soc A 355(1681): 167–187

    Article  MATH  ADS  Google Scholar 

  9. Blyth MG, Mestel AJ (1999) Steady flow in a dividing pipe. J Fluid Mech 401: 339–364

    Article  MATH  ADS  Google Scholar 

  10. Grotberg JB, Jensen OE (2004) Biofluid mechanics in flexible tubes. Annu Rev Fluid Mech 36: 121–147

    Article  ADS  MathSciNet  Google Scholar 

  11. Guneratne JC, Pedley TJ (2006) High-Reynolds-number steady flow in a collapsible channel. J Fluid Mech 569: 151–184

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. Jensen OE, Heil M (2003) High-frequency self-excited oscillations in a collapsible-channel flow. J Fluid Mech 481: 235–268

    Article  MATH  ADS  MathSciNet  Google Scholar 

  13. Pedley TJ, Luo XY (1998) Modelling flow and oscillations in collapsible tubes. Theor Comput Fluid Dyn 10: 277–294

    Article  MATH  Google Scholar 

  14. Davies C, Carpenter PW (1997) Instabilities in a plane channel flow between compliant walls. J Fluid Mech 352: 205–243

    Article  MATH  ADS  MathSciNet  Google Scholar 

  15. Gajjar JSB, Sibanda P (1996) The hydrodynamic stability of channel flow with compliant boundaries. Theor Comput Fluid Dyn 8: 105–129

    Article  MATH  Google Scholar 

  16. Heil M, Waters SL (2006) Transverse flows in rapidly oscillating cylindrical shells. J Fluid Mech 547: 185–214

    Article  MATH  ADS  MathSciNet  Google Scholar 

  17. Larose PG, Grotberg JB (1997) Flutter and long-wave instabilities in compliant channels conveying developing flows. J Fluid Mech 331: 37–58

    Article  MATH  ADS  Google Scholar 

  18. Vito RP, Dixon SA (2003) Blood vessel constitutive models 1995–2002. Annu Rev Biomed Eng 5: 413–439

    Article  Google Scholar 

  19. Gaver DP, Halpern D, Jensen OE, Grotberg JB (1996) The steady motion of a semi-infinite bubble through a flexible-walled channel. J Fluid Mech 319: 25–65

    Article  MATH  ADS  Google Scholar 

  20. Jensen OE, Horsburgh MK, Halpern D, Gaver DP (2002) The steady propagation of a bubble in a flexible-walled channel: asymptotic and computational models. Phys Fluids 14(2): 443–457

    Article  ADS  Google Scholar 

  21. Canic S, Tambaca J, Guidoboni G, Mikelic A, Hartley CJ, Rosenstrauch D (2006) Modelling viscoelastic behaviour of arterial walls and their interaction with pulsatile blood flow. SIAM J Appl Math 67(1): 164–193

    Article  MATH  MathSciNet  Google Scholar 

  22. Sherwin SJ, Franke V, Piero J, Parker K (2003) One-dimensional modelling of a vascular network in space-time variables. J Eng Math 47: 217–250

    Article  MATH  Google Scholar 

  23. Pott F, Ray CA, Olesen HL, Ide K, Secher NH (1997) Middle cerebral artery blood velocity, arterial diameter and muscle sympathetic nerve activity during post-exercise muscle ischaemia. Acta Physiol Scand 160: 43–47

    Article  Google Scholar 

  24. Leutin VP, Pystina EA, Yarosh SV (2004) Linear blood flow velocity in arteries of the brain hemispheres in left-handers and right-handers during hypoxia. Hum Physiol 30(3): 290–292

    Article  Google Scholar 

  25. Berger SA (1993) Flow in large blood vessels. Contemp Math 141: 479–518

    Google Scholar 

  26. Bloor MIG (1978) Large amplitude surface waves. J Fluid Mech 84(1): 167–179

    Article  MATH  ADS  MathSciNet  Google Scholar 

  27. King AC, Bloor MIG (1987) Free-surface flow over a step. J Fluid Mech 182: 193–208

    Article  MATH  ADS  Google Scholar 

  28. King AC, Bloor MIG (1990) Free-surface flow of a stream obstructed by an arbitrary bed topography. Q J Mech Appl Math 43(1): 87–106

    Article  MATH  MathSciNet  Google Scholar 

  29. Baroud CN, Tsikata S, Heil M (2006) The propagation of low-viscosity fingers into fluid-filled branching networks. J Fluid Mech 546: 285–294

    Article  MATH  ADS  Google Scholar 

  30. Bowles RI, Ovenden NC, Smith FT (2008) Multi-branching three-dimensional flow with substantial changes in vessel shapes. J Fluid Mech 614: 329–354

    Article  MATH  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. E. F. Green.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Green, J.E.F., Smith, F.T. & Ovenden, N.C. Flow in a multi-branching vessel with compliant walls. J Eng Math 64, 353–365 (2009). https://doi.org/10.1007/s10665-009-9285-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10665-009-9285-z

Keywords

Navigation