Skip to main content
Log in

Abundance versus presence/absence data for modelling fish habitat preference with a genetic Takagi–Sugeno fuzzy system

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

This study compared the accuracy of fuzzy habitat preference models (FHPMs) and habitat preference curves (HPCs) obtained from the FHPMs in order to assess the effect of two types of data [log-transformed fish population density (LOG) and presence–absence (P/A) data] on the habitat preference evaluation of Japanese medaka (Oryzias latipes). Three independent data sets were prepared for each type of data. The results differed according to the data sets and the types of data used. The HPCs showed a similar trend, whilst the degrees of preference were different. The model accuracy also differed according to the data sets used. Although almost no statistical difference was observed, on average, the P/A-based models showed a better performance according to the threshold-independent performance measures, whilst the LOG-based models showed better performance in predicting absence of the fish. These results can be explained partly from the different shapes of HPCs. This case study of Japanese medaka demonstrated the effect of different types of data on habitat preference evaluation. Further studies should build on the present finding and evaluate the effects of data characteristics such as the size of data sets and the prevalence for better understanding and reliable assessment of the habitat for target species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adriaenssens, V., De Baets, B., Goethals, P. L. M., & De Pauw, N. (2004). Fuzzy rule-based models for decision support in ecosystem management. Science of the Total Environment, 319, 1–12.

    Article  CAS  Google Scholar 

  • Beck, J. L., Dauwalter, D. C., Gerow, K. G., & Hayward, G. D. (2010). Design to monitor trend in abundance and presence of American beaver (Castor canadensis) at the national forest scale. Environmental Monitoring and Assessment, 164, 463–479.

    Article  CAS  Google Scholar 

  • Chefaoui, R. M., & Lobo, J. M. (2008). Assessing the effects of pseudo-absences on predictive distribution model performance. Ecological Modelling, 210, 478–486.

    Article  Google Scholar 

  • Cordon, O., Herrera, F., Hoffmann, F., & Magdalena, L. (2001). Genetic fuzzy systems: Evolutionary tuning and learning of fuzzy knowledge bases. Singapore: World Scientific.

    Google Scholar 

  • Dedecker, A. P., Goethals, P. L. M., D'heygere, T., Gevrey, M., Lek, S., & De Pauw, N. (2005). Application of artificial neural network models to analyse the relationships between Gammarus pulex L. (Crustacea, Amphipoda) and river characteristics. Environmental Monitoring and Assessment, 111, 223–241.

    Article  CAS  Google Scholar 

  • Elith, J., & Graham, C. H. (2009). Do they? How do they? Why do they differ? On finding reasons for differing performances of species distribution models. Ecography, 32, 66–77.

    Article  Google Scholar 

  • Elith, J., & Leathwick, J. R. (2009). Species distribution models: Ecological explanation and prediction across space and time. Annual Review of Ecology, Evolution, and Systematics, 40, 677–697.

    Article  Google Scholar 

  • Elith, J., Ferrier, S., Huettmann, F., & Leathwick, J. (2005). The evaluation strip: A new and robust method for plotting predicted responses from species distribution models. Ecological Modelling, 186, 280–289.

    Article  Google Scholar 

  • Elith, J., Graham, C. H., Anderson, R. P., Dudík, M., Ferrier, S., Guisan, A., et al. (2006). Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 29, 129–151.

    Article  Google Scholar 

  • Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters, 27(8), 861–874.

    Article  Google Scholar 

  • Fielding, A. H., & Bell, J. F. (1997). A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation, 24(1), 38–39.

    Article  Google Scholar 

  • Fukuda, S. (2009). Consideration of fuzziness: Is it necessary in modelling fish habitat preference of Japanese medaka (Oryzias latipes)? Ecological Modelling, 220, 2877–2884.

    Article  Google Scholar 

  • Fukuda, S. (2011). Assessing the applicability of fuzzy neural networks for habitat preference evaluation of Japanese medaka (Oryzias latipes). Ecological Informatics, 6, 286–295.

    Article  Google Scholar 

  • Fukuda, S., & Hiramatsu, K. (2008). Prediction ability and sensitivity of artificial intelligence-based habitat preference models for predicting spatial distribution of Japanese medaka (Oryzias latipes). Ecological Modelling, 215, 301–313.

    Article  Google Scholar 

  • Fukuda, S., & Okushima, S. (2008). Assessing nonlinearity in fish habitat preference of Japanese medaka (Oryzias latipes) using genetic algorithm-optimised habitat prediction models. JARQ-Japan Agriculture Research Quarterly, 42(2), 97–107.

    Google Scholar 

  • Fukuda, S., Hiramatsu, K., & Mori, M. (2006). Fuzzy neural network model for habitat prediction and HEP for habitat quality estimation focusing on Japanese medaka (Oryzias latipes) in agricultural canals. Paddy and Water Environment, 4(3), 119–124.

    Article  Google Scholar 

  • Fukuda, S., De Baets, B., Mouton, A. M., Waegeman, W., Nakajima, J., Mukai, T., et al. (2011). Effect of model formulation on the optimization of a genetic Takagi–Sugeno fuzzy system for fish habitat suitability evaluation. Ecological Modelling, 222, 1401–1413.

    Article  Google Scholar 

  • Goldberg, D. (1989). Genetic algorithms in search, optimisation, and machine learning. Boston, MA: Addison-Wesley.

    Google Scholar 

  • Guay, J. C., Boisclair, D., Leclerc, M., & Lapointe, M. (2003). Assessment of the transferability of biological habitat models for Atlantic salmon parr (Salmo salar). Canadian Journal of Fisheries and Aquatic Science, 60, 1398–1408.

    Article  Google Scholar 

  • Hernandez, P. A., Graham, C. H., Master, L. L., & Albert, D. L. (2006). The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography, 29, 773–785.

    Article  Google Scholar 

  • Herrera, F. (2008). Genetic fuzzy systems: Taxonomy, current research trends and prospects. Evolutionary Intelligence, 1, 27–46.

    Article  Google Scholar 

  • Hiramatsu, K., & Shikasho, S. (2004). GA-based model optimisation for habitat preference of Japanese Medaka fish (Oryzias latipes) to streamflow environments. Paddy and Water Environment, 2, 135–143.

    Article  Google Scholar 

  • Hiramatsu, K., Fukuda, S., & Shikasho, S. (2003). Mathematical modeling of habitat preference of Japanese medaka for instream water environment using fuzzy inference. Transactions of Japanese Society of Irrigation, Drainage and Reclamation Engineering, 228, 65–72 (in Japanese with English abstract).

    Google Scholar 

  • Leftwich, K. N., Angermeier, P. L., & Dolloff, C. A. (1997). Factor influencing behaviour and transferability of habitat models for a benthic stream fish. Transactions of the American Fisheries Society, 126, 725–734.

    Article  Google Scholar 

  • Lek, S. (2007). Uncertainty in ecological models. Ecological Modelling, 207, 1–2.

    Article  CAS  Google Scholar 

  • Lek, S., Belaud, A., Baran, P., Dimopoulos, I., & Delacoste, M. (1996a). Role of some environmental variables in trout abundance models using neural networks. Aquatic Living Resources, 9, 23–29.

    Article  Google Scholar 

  • Lek, S., Delacoste, M., Baran, P., Dimopoulos, I., Lauga, J., & Aulagnier, S. (1996b). Application of neural networks to modelling nonlinear relationships in ecology. Ecological Modelling, 90, 39–52.

    Article  Google Scholar 

  • Mäki-Petäy, A., Huusko, A., Erkinaro, J., & Muotka, T. (2002). Transferability of habitat suitability criteria of juvenile Atlantic salmon (Salmo salar). Canadian Journal of Fisheries and Aquatic Science, 59, 218–228.

    Article  Google Scholar 

  • Mastrorillo, S., Lek, S., Dauba, F., & Belaud, A. (1997). The use of artificial neural networks to predict the presence of small-bodied fish in a river. Freshwater Biology, 38, 237–246.

    Article  Google Scholar 

  • Mouton, A. M., Schneider, M., Depestele, J., Goethals, P. L. M., & De Pauw, N. (2007). Fish habitat modelling as a tool for river management. Ecological Engineering, 29, 305–315.

    Article  Google Scholar 

  • Mouton, A. M., Schneider, M., Peter, A., Holzer, G., Müller, R., Goethals, P. L. M., et al. (2008). Optimisation of a fuzzy physical habitat model for spawning European grayling (Thymallus thymallus L.) in the Aare river (Thun, Switzerland). Ecological Modelling, 215, 122–132.

    Article  Google Scholar 

  • Mouton, A. M., De Baets, B., & Goethals, P. L. M. (2009). Knowledge-based versus data-driven fuzzy habitat suitability models for river management. Environmental Modelling and Software, 24, 982–993.

    Article  Google Scholar 

  • Mouton, A. M., De Baets, B., Van Broekhoven, E., & Goethals, P. L. M. (2009). Prevalence-adjusted optimisation of fuzzy models for species distribution. Ecological Modelling, 220, 1776–1786.

    Article  Google Scholar 

  • Mouton, A. M., Dedecker, A. P., Lek, S., & Goethals, P. L. M. (2010a). Selecting variables for habitat suitability of Asellus (Crustacea, Isopoda) by applying input variable contribution methods to artificial neural network models. Environmental Modeling and Assessment, 15, 65–79.

    Article  Google Scholar 

  • Mouton, A. M., De Baets, B., & Goethals, P. L. M. (2010b). Ecological relevance of performance criteria for species distribution models. Ecological Modelling, 221, 1995–2002.

    Article  Google Scholar 

  • Mouton, A. M., Alcaraz-Hernandez, J. D., De Baets, B., Goethals, P. L. M., & Martinez-Capel, F. (2011). Data-driven fuzzy habitat suitability models for brown trout in Spanish Mediterranean rivers. Environmental Modelling & Software, 26, 615–622.

    Article  Google Scholar 

  • Nykänen, M., & Huusko, A. (2003). Size-related changes in habitat selection by larval grayling (Thymallus thymallus L.). Ecology of Freshwater Fish, 12, 127–133.

    Article  Google Scholar 

  • Nykänen, M., & Huusko, A. (2004). Transferability of habitat preference criteria for larval European grayling (Thymallus thymallus). Canadian Journal of Fisheries and Aquatic Science, 61, 185–192.

    Article  Google Scholar 

  • Nykänen, M., Huusko, A., & Lahti, M. (2004). Changes in movement, range and habitat preferences of adult grayling from late summer to early winter. Journal of Fish Biology, 64, 1386–1398.

    Article  Google Scholar 

  • Pearson, R. G., Raxworthy, C. J., Nakamura, M., & Peterson, A. T. (2007). Predicting species distributions from small numbers of occurrence records: A test case using cryptic geckos in Madagascar. Journal of Biogeography, 34, 102–117.

    Article  Google Scholar 

  • Pereira, G. C., Evsukoff, A., & Ebecken, N. F. F. (2009). Fuzzy modelling of chlorophyll production in a Brazilian upwelling system. Ecological Modelling, 220, 1506–1512.

    Article  CAS  Google Scholar 

  • Phillips, S. J., Dudík, M., Elith, J., Graham, C. H., Lehmann, A., Leathwick, J., et al. (2009). Sample selection bias and presence-only distribution models: Implications for background and pseudo-absence data. Ecological Applications, 19, 181–197.

    Article  Google Scholar 

  • Pino-Mejías, R., Cubiles-de-la-Vega, M. D., Anaya-Romero, M., Pascual-Acosta, A., Jordán-López, A., & Bellinfante-Crocci, N. (2010). Predicting the potential habitat of oaks with data mining models and the R system. Environmental Modelling and Software, 25, 826–836.

    Article  Google Scholar 

  • Silvert, W. (2000). Fuzzy indices of environmental conditions. Ecological Modelling, 130, 111–119.

    Article  CAS  Google Scholar 

  • Stockwell, D., & Peters, D. (1999). The GARP modelling system: Problems and solutions to automated spatial prediction. International Journal of Geographical Information Science, 13, 143–158.

    Article  Google Scholar 

  • Stockwell, D. R. B., & Peterson, A. T. (2002). Effects of sample size on accuracy of species distribution models. Ecological Modelling, 148, 1–13.

    Article  Google Scholar 

  • Takagi, T., & Sugeno, M. (1985). Fuzzy identification of systems and its applications to modelling and control. IEEE Transactions on Systems, Man, and Cybernetics, 15, 116–132.

    Google Scholar 

  • Van Broekhoven, E., Adriaenssens, V., De Baets, B., & Verdonschot, P. F. M. (2006). Fuzzy rule-based macroinvertebrate habitat suitability models for running waters. Ecological Modelling, 198, 71–84.

    Article  Google Scholar 

  • Van Broekhoven, E., Adriaenssens, V., & De Baets, B. (2007). Interpretability-preserving genetic optimisation of linguistic terms in fuzzy models for fuzzy ordered classification: An ecological case study. International Journal of Approximate Reasoning, 44, 65–90.

    Article  Google Scholar 

  • Vanreusel, W., Maes, D., & Van Dyck, H. (2007). Transferability of species distribution models: A functional habitat approach for two regionally threatened butterflies. Conservation Biology, 21(1), 201–212.

    Article  Google Scholar 

  • Wisz, M. S., Hijmans, R. J., Li, J., Peterson, A. T., Graham, C. H., Guisan, A., et al. (2008). Effects of sample size on the performance of species distribution models. Diversity and Distributions, 14, 763–773.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Grant-in-aid for Young Scientists B (21780225) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan. Shinji Fukuda is a recipient of JSPS Institutional Program for Young Researcher Overseas Visits (Kyushu University). The authors wish to thank Prof. Dr. Kazuaki Hiramatsu (Kyushu University) for his sincere assistance in the early phase of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinji Fukuda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fukuda, S., Mouton, A.M. & De Baets, B. Abundance versus presence/absence data for modelling fish habitat preference with a genetic Takagi–Sugeno fuzzy system. Environ Monit Assess 184, 6159–6171 (2012). https://doi.org/10.1007/s10661-011-2410-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-011-2410-2

Keywords

Navigation