Skip to main content
Log in

Physicochemical and microbiological assessment of recreational and drinking waters

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The present study was aimed to make an assessment of health risk due to pollution and human pathogenic bacteria associated with the recreational and drinking water sources in twin densely populated holy Indian cities Ayodhya and Faizabad. Though physicochemical studies revealed that the water available in the area is under recommended limits for human use, it is unsafe on account of poor microbiological quality of surface and ground water in the region. The most probable number (MPN) test results revealed the preponderance of ≥2,400 total coliforms (TC) (100 ml) − 1 in river, pond, dug well and kund waters. Contrary to that, 94% tube wells, 32% hand pumps and 25% piped supply water were under safe limits having <3 TC (100 ml) − 1. The shallow depth (~40 ft), water logging and presence of septic tanks in the near vicinity are the possible reasons of poor microbial quality of hand pump drinking water. The municipal supply water passes along sewage line where loose connections and/or cracks in pipe lead to mixing and contamination. The significant best quality of tube well water evident from the absence of TC could be attributed to the depth of well ≥150 ft and usually their location away from the habitation. A total of 263 bacteria from 186 water samples were isolated, and at least five genera of enteric bacteria from various water sources were identified morphologically and biochemically as Escherichia coli, Klebsiella sp., Enterobacter sp., Shigella sp. and Salmonella sp. The serotyping of 72 E. coli and 36 Salmonella sp. revealed 51 as E. coli O157 and 20 as Salmonella sp. The presence of enteric pathogens in water sources pose threat to human health and therefore call for immediate remedial measures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • American Public Health Association (1971). Standard methods for the examination of water and waste water (13th ed.). Washington, D.C.: American Public Health Association.

    Google Scholar 

  • Baghel, V. S., Gopal, K., Diwedi, S., & Tripathi, R. D. (2005). Bacterial indicators of faecal contamination of the Gangatic river system right at its source. Ecological Indicators, 5, 49–56.

    Article  Google Scholar 

  • Briancesco, R. (2005). Microbial indicators and fresh water quality assessment. Ann Ist Super Sanita, 41(3), 353–358.

    Google Scholar 

  • Bureau of Indian Standards (BIS) (2005). Indian standard drinking water - specification (Second Revision of IS-10500) IS-10500:2004. New Delhi: BIS.

    Google Scholar 

  • Cabelli, V. J., Dufour, A. P., Mc Cabe, L. J., & Levin, M. A. (1982). Swimming associated gastroenteritis and water quality. American Journal of Epidemiology, 115, 606–616.

    CAS  Google Scholar 

  • Chan, C. L., Zalifah, M. K., & Norrakiah, A. S. (2007). Microbiological and physiological quality of drinking water. The Malaysian Journal of Analytical Sciences, 11(2), 414–420.

    Google Scholar 

  • Chaurasia, M., & Pandey, G. C. (2007). Study of physico-chemical characteristics of some water ponds of Ayodhya-Faizabad. Indian Journal of Environmental Protection, 27(11), 1019–1023.

    CAS  Google Scholar 

  • Clark, J. A. (1968). A presence-absence (P-A) test providing sensitive and inexpensive detection of coliforms, faecal coliforms and faecal streptococci in municipal drinking water supplies. Canadian Journal of Microbiology, 14, 13–18.

    Article  CAS  Google Scholar 

  • CPCB (2008). Guidelines for water quality monitoring. Parivesh Bhawan: Central Pollution Control Board.

    Google Scholar 

  • Craun, G. F., Berger, P. S., & Calderon, R. L. (1997). Coliform bacteria and water borne disease outbreaks. Journal of American Water Works Association, 89, 96–104.

    Google Scholar 

  • Griffin, P. M. (1999). Escherichia coli 0157: H7 and other enterohaemorrhagic E. coli. In M. J. Blaser, P. D. Smith, J. I. Ravdin, H. B. Greenberg, & R. L. Guerrant (Eds.), Infections of the gastrointestinal tract I (pp. 739). New York: Raven.

  • Haruna, R., Ejobi, F., & Kabagambe, E. K. (2005). The quality of water from protected springs in Katwe and Kisenyi parishes, Kampala city, Uganda. African Health Sciences, 5(1), 14–20.

    Google Scholar 

  • Ho, K. C., & Hui, C. C. (2001). Chemical contamination of the east river (Dongjiang) and its implication on sustainable development in the Pearl River Delta. Environmental International, 26, 303–308.

    Article  CAS  Google Scholar 

  • Holt, J. G., Krieg, N. R., Sneath, P. H. A., Staley, J. T., & Williams, S. T. (1993). Bergey’s Manual of Determinative Bacteriology (9th ed.). Baltimore: Williams & Wilkins.

    Google Scholar 

  • Indian Council of Medical Research (1971). Manual of standards of quality of drinking water supplies. New Delhi: ICMR.

    Google Scholar 

  • ITRC (2006). Environmental status of Lucknow: A pre-monsoon survey report on World Environment Day-2006. Lucknow: Industrial Toxicology Research Centre.

  • Keswick, B. H. (1984). Sources of groundwater pollution. In G. Bitton, & C. P. Gerba (Eds.), Groundwater pollution microbiology (pp. 39–64). New York: Wiley.

    Google Scholar 

  • Khurana, I., & Sen, R. (2008). Drinking water quality in rural India: Issues and approaches. Water Aid India. http://www.wateraid.org/documents/plugin_documents/drinking_water.pdf. Accessed 28 May 2010.

  • Kirschner, A. K. T., Kavka, G. G., Velimirov, B., Mach, R. L., Sommer, R., & Farnleitner, A. H. (2009). Microbiological water quality along the Danube River: Integrating data from two whole-river surveys and a transnational monitoring network. Water Research, 43(15), 3673–3684. doi:10.1016/j.watres.2009.05.034.

    Article  CAS  Google Scholar 

  • Kumarasamy, P., Vignesh, S., James, R. A., Muthukumar, K., & Rajendran, A. (2009). Enumeration and identification of pathogenic pollution indicators in Cauvery river, south India. Research Journal of Microbiology, 4(12), 540–549.

    Article  Google Scholar 

  • Meck, N. (1996). Dissolved oxygen. In Pond water chemistry. Koi Club of San Diego. http://users.vcnet.com/rrenshaw/H2Oquality.html. Accessed 28 July 2010.

  • Paul, J. H., Rose, J. B., Jiang, S., Kellogg, C., & Shinn, E. A. (1995). Occurrence of fecal indicator bacteria in surface waters and the subsurface aquifer in Key Largo, Florida. Applied and Environmental Microbiology, 61(6), 2235–2241.

    CAS  Google Scholar 

  • Powell, K. L., Taylor, R. G., Cronin, A. A., Barrett, M. H., Pedley S., Sellwood, J., et al. (2003). Microbial contamination of two urban sandstone aquifers in the UK. Water Research, 37(2), 339–352.

    Article  CAS  Google Scholar 

  • Pruss, A., Kay, D., Fewtrell, L., & Bartram, J. (2002). Estimating the burden of disease due to water, sanitation and hygiene at global level. Environmental Health Perspectives, 10, 537–542.

    Article  Google Scholar 

  • Raymond, F. (1992). Le Problame dis ean dans le monde (problems of water) (pp. 123–126). London: EB.

    Google Scholar 

  • Rice, E. W., Geldreich, E. E., & Read, E. J. (1989). The Presence-Absence coliform test for monitoring drinking water quality. Public Health Reports, 104(1), 54–58.

    CAS  Google Scholar 

  • Scott, T. M., Salina, P., Portier, K. M., Rose, J. B., Tamplin, M. L., Farrah, S. R., et al. (2003). Geographical variation in ribotype profiles of Escherichia coli isolates from human, swim, poultry, beef and dairy cattle in Florida. Applied and Environmental Microbiology, 69, 1089–1092.

    Article  CAS  Google Scholar 

  • Senior, B. W. (1996). Examination of water, milk, food and air. In J. G. Collee, B. P. Marmion, A. G. Fraser, & A. Simmons (Eds.), Mackie and McCartney practical medical microbiology (4th ed., pp. 883–921). Edinburgh: Churchill Livingstone.

    Google Scholar 

  • Tewari, S., Ramteke, P. W., & Garg, S. K. (2003). Evaluation of simple microbiol tests for detection of fecal coliforms directly at 44.5 degrees C. Environmental Monitoring and Assessment, 85(2), 191–198.

    Article  CAS  Google Scholar 

  • U.S. Environmental Protection Agency (1986). Ambient water quality criteria for bacteria. EPA-440/5-84-002. Cincinnati: Environmental Protection Agency.

  • World Health Organization (WHO) (2008). Guidelines for drinking-water quality [electronic resource]: Incorporating 1st and 2nd addenda (3rd ed, Vol. 1, Recommendations). Geneva: WHO.

    Google Scholar 

  • WQTR (2009). Water quality test report 2008–2009. Lukcnow, India: Water Quality Testing Laboratory, Planning and Project Division-2.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satyendra K. Garg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, S., Tripathi, V.R. & Garg, S.K. Physicochemical and microbiological assessment of recreational and drinking waters. Environ Monit Assess 184, 2691–2698 (2012). https://doi.org/10.1007/s10661-011-2144-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-011-2144-1

Keywords

Navigation