Skip to main content
Log in

Nanominerals and nanoparticles in feed coal and bottom ash: implications for human health effects

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Environmental and human health risk assessments of nanoparticle effects from coal and bottom ash require thorough characterisation of nanoparticles and their aggregates. In this manuscript, we expand the study of human exposure to nanosized particles from coal combustion sources (typically <100 nm in size), characterising the complex micromineralogy of these airborne combustion-derived nanomaterials. Our study focuses on bottom ash generated in the Santa Catarina power station (Brazil) which uses coal enriched in ashes, many potential elements (e.g. Cr and Ni) and pyrite. Transmission electron microscope data reveal nanoscale C deposits juxtaposed with and overgrown by slightly larger aluminosilicate (Al–Si) glassy spheres, oxides, silicates, carbonated, phosphates and sulphates. Iron oxides (mainly hematite and magnetite) are the main bottom ash products of the oxidation of pyrite, sometimes via intermediate pyrrhotite formation. The presence of iron oxide nanocrystals mixed with silicate glass particles emphasises the complexity of coal and bottom ash micromineralogy. Given the potentially bioreactive nature of such transition metal-bearing materials, there is likely to be an increased health risk associated with their inhalation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • An, D., Li, D., Liang, Y., & Jing, Z. (2007). Unventilated indoor coal-fired stoves in Guizhou province, China: Reduction of arsenic exposure through behavior changes resulting from mitigation and health education in populations with arsenicosis. Environmental Health Perspectives, 115, 659–662.

    Article  CAS  Google Scholar 

  • ANEEL (2006). Agência Nacional de Energia Elétrica. http://www.aneel.gov.br. Accessed 25 June.

  • ASTM (1991). Annual Book of ASTM Standards. Sec 05.05. Standard test method for ash in the analysis sample of coal and coke from coal, Philadelphia, PA.

  • Balaan, M. R., & Banks, D. E. (1998). Chapter 29: Silicosis. In W. N. Rom (Ed.), Environmental and occupational medicine (3rd ed.). New York: Lippincott-Raven.

    Google Scholar 

  • Belluso, E., Bellis, D., Fornero, E., Capella, S., Ferraris, G., & Coverlizza, S. (2006). Assessment of inorganic fibre burden in biological samples by scanning electron microscopy–energy dispersive spectroscopy. Microchimica Acta, 155, 95.

    Article  CAS  Google Scholar 

  • Bhargava, S., Garg, A., & Subasinghe, N. (2009). In situ high-temperature phase transformation studies on pyrite. Fuel, 88, 988–993.

    Article  CAS  Google Scholar 

  • Binotto, R. B., Teixeira, E. C., Sanchez, J. C. D., Migliavacca, D., & Nani, A. S. (2000). Environmental assessment: contamination of phreatic aquifer in areas impacted by waste from coal processing activities. Fuel, 79, 1547–1560.

    Article  CAS  Google Scholar 

  • Borm, P., Robbins, D., & Haubold, S. (2006). The potential risks of nanomaterials: A review carried out for ECETOC. Particle and Fibre Toxicology, 3, 11. doi:10.1186/1743-8977-3-11.

    Article  Google Scholar 

  • Brown, D., Wilson, M., MacNee, W., Stone, V., & Donaldson, K. (2001). Size-dependent proinflammatory effects of ultrafine polystyrene particles: A role for surface area and oxidative stress in the enhanced activity of ultrafines. Toxicology and Applied Pharmacology, 175, 191–199.

    Article  CAS  Google Scholar 

  • Brown, R. A., Leahy, M. C., & Pyrih, R. Z. (1998). In situ remediation of metals comes of age. Remediation, 8, 81–96.

    Article  Google Scholar 

  • Bullard-Dillard, R., Creek, K., Scrivens, W., & Tour, J. (1996). Tissue sites of uptake of C-14-labeled C-60. Bioorganic Chemistry, 24, 376–385.

    Article  CAS  Google Scholar 

  • Bunt, J., & Waanders, F. (2009). Pipe reactor gasification studies of a South African bituminous coal blend. Part 1—carbon and volatile matter behaviour as function of feed coal particle size reduction. Fuel, 88, 585–594.

    Article  CAS  Google Scholar 

  • Bunt, J., Joubert, J., & Waanders, F. (2008). Coal char temperature profile estimation using optical reflectance for a commercial-scale Sasol–Lurgi FBDB gasifier. Fuel, 87, 2849–2855.

    Article  CAS  Google Scholar 

  • Chau, C., Wu, S., & Yen, G. (2007). The development of regulations for food nanotechnology. Trends in Food Science & Technology, 18, 269–280.

    Article  CAS  Google Scholar 

  • Chen, Y., Shah, N., & Huggins, F. (2005). Characterization of ultrafine coal fly ash particles by energy-filtered TEM. Journal of Microscopy, 217, 225–234.

    Article  CAS  Google Scholar 

  • Chen, Y., Shah, N., Huggins, F. E., & Huffman, G. P. (2004). Investigation of the microcharacteristics of PM2.5 in residual oil fly ash by analytical transmission electron microscopy. Environmental Science and Technology, 38, 6553–6560.

    Article  CAS  Google Scholar 

  • Cohn, C., Borda, M., & Schoonen, M. (2004). RNA decomposition by pyrite-induced radicals and possible role of lipids during the emergence of life. Earth and Planetary Science Letters, 225, 271–278.

    Article  CAS  Google Scholar 

  • Cohn, C., Mueller, S., Wimmer, E., Leifer, N., Greenbaum, S., Strongin, D. R., et al. (2006). Pyrite-induced hydroxyl radical formation and its effect on nucleic acids. Geochemical Transactions, 7, 3.

    Article  Google Scholar 

  • Cohn, C., Pak, A., Schoonen, M., & Strongin, D. (2005). Quantifying hydrogen peroxide in iron-containing solutions using leuco crystal violet. Geochemical Transactions, 6, 47–52.

    Article  CAS  Google Scholar 

  • Cooke, D. J., Redfern, S. E., & Parker, S. C. (2004). Atomistic simulation of the structure and segregation to the (0001) and surfaces of Fe2O3. Physics and Chemistry of Minerals, 31, 507–517.

    Article  CAS  Google Scholar 

  • Cornell, R. M., & Schwertmann, U. (2003). The iron oxides: Structure, properties, reactions, occurrence and uses, second, completely revised and extended ed. Weinheim: Wiley-VCH.

    Google Scholar 

  • Depoi, F. S., Pozebon, D., & Kalkreuth, W. D. (2008). Chemical characterization of feed coals and combustion-by-products from Brazilian power plants. International Journal of Coal Geology, 76, 227–236.

    Article  CAS  Google Scholar 

  • Effros, R. (2009). The canary in the coal mine: Telomeres and human healthspan. Journals of Gerontology, Series A: Biological Sciences and Medical Sciences, 64, 511–515.

    Article  Google Scholar 

  • Feng, J. Y., Hu, X. J., & Yue, P. L. (2004). Discoloration and mineralization of orange II using different heterogeneous catalysts containing Fe: A comparative study. Environmental Science & Technology, 38, 5773–5778.

    Article  CAS  Google Scholar 

  • Feng, X. S., Dean, C., Zhong, L., Paras, M. S., Santora, B., Sutorik, A. C., et al. (2006). Converting ceria polyhedral nanoparticles into single-crystal nanospheres. Science, 312, 1504–1508.

    Article  CAS  Google Scholar 

  • Fowler, T. A., Holmes, P. R., & Crundwell, F. K. (1999). Mechanism of pyrite dissolution in the presence of Thiobacillus ferrooxidans. Applied and Environmental Microbiology, 65, 2987–2993.

    CAS  Google Scholar 

  • Frampton, M., Stewart, J., Oberdorster, G., Morrow, P., Chalupa, D., Pietropaoli, A., et al. (2006). Inhalation of ultrafine particles alters blood leukocyte expression of adhesion molecules in humans. Environmental Health Perspectives, 114, 51–58.

    Article  CAS  Google Scholar 

  • Geiser, M., Rothen-Rutishauser, B., Kapp, N., Schurch, S., Kreyling, W., Schulz, H., et al. (2005). Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and in cultured cells. Environmental Health Perspectives, 113, 1555–1560.

    Article  Google Scholar 

  • Giere, R., Blackford, M., & Smith, K. (2006). TEM study of PM2.5 emitted from coal and tire combustion in a thermal power station. Environmental Science & Technology, 40, 6235–6240.

    Article  CAS  Google Scholar 

  • Gilbert, B., & Banfield, J. F. (2005). Molecular-scale processes involving nanoparticulate minerals in biogeochemical systems. Reviews in Mineralogy and Geochemistry, 59, 109–155.

    Article  CAS  Google Scholar 

  • Gilmour, M., O’Connor, S., Dick, C., Miller, C., & Linak, W. (2004). Differential pulmonary inflammation and in vitro cytotoxicity of size-fractionated fly ash particles from pulverized coal combustion. Journal of the Air & Waste Management Association, 54, 286–295.

    CAS  Google Scholar 

  • Hardman, R. (2006). A toxicologic review of quantum dots: Toxicity depends on physicochemical and environmental factors. Environmental Health Perspectives, 114, 165–172.

    Article  Google Scholar 

  • Hochella, M., Lower, S., Maurice, P., Penn, L., Sahai, N., Sparks, D., et al. (2008). Nanominerals, mineral nanoparticles, and earth systems. Science, 319, 1631–1635.

    Article  CAS  Google Scholar 

  • Hower, J., Graham, U., Dozier, A., Tseng, M., & Khatri, R. (2008). Association of the sites of heavy metals with nanoscale carbon in a Kentucky electrostatic precipitator fly ash. Environmental Science & Technology, 42, 8471–8477.

    Article  CAS  Google Scholar 

  • ICDD, International Center for Diffraction Data (2009). http://www.icdd.com. Accessed 20 July 2009.

  • Jorgensen, F., & Moyle, F. (1982). Phases formed during the thermal analysis of pyrite in air. Journal of Thermal Analysis, 25, 473–485.

    Article  CAS  Google Scholar 

  • Kelly, F. (2003). Oxidative stress: Its role in air pollution and adverse health effects. Occupational and Environmental Medicine, 60, 612–616.

    Article  Google Scholar 

  • Kerisit, S., & Parker, S. C. (2004). Free energy of adsorption of water and metal ions on the {10.hivin.14} calcite surface. Journal of the American Chemical Society, 126, 10152–10161.

    Article  CAS  Google Scholar 

  • Koch, A., Reynolds, F., Merkle, H., Weissleder, R., & Josephson, L. (2005). Transport of surface-modified nanoparticles through cell monolayers. ChemBioChem, 6, 337–345.

    Article  CAS  Google Scholar 

  • Levandowski, J., & Kalkreuth, W. (2009). Chemical and petrographical characterization of feed coal, fly ash and bottom ash from the Figueira Power Plant, Paraná, Brazil. International Journal of Coal Geology, 77, 269–281

    Article  CAS  Google Scholar 

  • Liang-Che, C., Jo-Chi, T., & Chung-Ching, H. (2006). Gene polymorphisms of fibrinolytic enzymes in coal workers pneumoconiosis. Archives of Environmental & Occupational Health, 61, 61–66.

    Article  Google Scholar 

  • Madden, A. S., Hochella, M. F., & Luxton, T. P. (2006). Insights for size-dependent reactivity of hematite nanomineral surfaces through Cu2 +  sorption. Geochimica et Cosmochimica Acta, 70, 4095–4104.

    Article  CAS  Google Scholar 

  • Mohan, D., Pittman, C. U. Jr. (2007). Arsenic removal from water/wastewater using adsorbents—a critical review. Journal of Hazardous Materials, 142, 1–53.

    Article  CAS  Google Scholar 

  • Oberdoerster, G., Oberdoerster, E., & Oberdoerster, J. (2005). Nanotoxicology: An emerging discipline evolving studies of ultrafine particles. Environmental Health Perspectives, 113, 823–839.

    Article  Google Scholar 

  • Peretyazhko, T., Zachara, J. M., Boily, J. F., Xia, Y., Gassman, P. L., Arey, B. W., et al. (2009). Mineralogical transformations controlling acid mine drainage chemistry. Chemical Geology, 262, 169–178.

    Article  CAS  Google Scholar 

  • Pritchard, R., Ghio, A., Lehmann, J., Winsett, D., Tepper, J., Park, P., et al. (1996). Oxidant generation and lung injury after particulate air pollutant exposure increase with concentrations of associated metals. Inhalation Toxicology, 8, 457–477.

    Article  CAS  Google Scholar 

  • Rastogi, N., Oakes, M., Schauer, J., Shafer, M., Majestic, B., & Weber, R. (2009). New technique for online measurement of water-soluble Fe(II) in atmospheric aerosols. Environmental Science & Technology, 43, 2425–2430.

    Article  CAS  Google Scholar 

  • Rohde, G. M., & Silva, N. I. W. (2006). Cinzas de Carvão Fóssil no Brasil Aspectos Técnicos e Ambientais (Vol. 1). Porto Alegre: CIENTEC.

    Google Scholar 

  • Schorr, J., & Everhart, J. (1969). Thermal behavior of pyrite and its relation to carbon and sulfur oxidation in clays. Journal of the American Ceramic Society, 52, 351–354.

    Article  CAS  Google Scholar 

  • See, S., Wang, Y., & Balasubramanian, R. (2007). Contrasting reactive oxygen species and transition metal concentrations in combustion aerosols. Environmental Research, 103, 317–324.

    Article  CAS  Google Scholar 

  • Sherman, D. M. (2005). Electronic structures of iron(III) and manganese(IV) (hydr)oxide minerals: Thermodynamics of photochemical reductive dissolution in aquatic environments. Geochimica et Cosmochimica Acta, 69, 3249–3255.

    Article  CAS  Google Scholar 

  • Silva, L. F. O., Macias, F., Oliveira, M. L. S., da Boit, K. M., & Waanders, F. (2010). Coal cleaning residues and Fe-minerals implications. Environmental Monitoring and Assessment. doi:10.1007/s10661-010-1340-8.

    Google Scholar 

  • Silva, L. F. O., Moreno, T., & Querol, X. (2009a). An introductory TEM study of Fe-nanominerals within coal fly ash. Science of the Total Environment, 407, 4972–4974.

    Article  CAS  Google Scholar 

  • Silva, L. F. O., Oliveira, M. L. S., da Boit, K. M., & Finkelman, R. B. (2009b). Characterization of Santa Catarina (Brazil) coal with respect to Human Health and Environmental Concerns. Environmental Geochemistry and Health, 31, 475–485.

    Article  CAS  Google Scholar 

  • Smedley, P. L., & Kinniburgh, D. G. (2002). A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry, 17, 517–68.

    Article  CAS  Google Scholar 

  • Smith, C., Shaw, B., & Handy, R. (2007). Toxicity of single walled carbon nanotubes to rainbow trout (Oncorhynchus mykiss): respiratory toxicity, organ pathologies, and other physiological effects. Aquatic Toxicology, 82, 94–109.

    Article  CAS  Google Scholar 

  • Suzuki, Y., Kelly, S., Kemner, K., & Banfield, J. (2002). Radionuclide contamination—nanometre-size products of uranium bioreduction. Nature, 419, 134–134.

    Article  CAS  Google Scholar 

  • Tatár, E., Csiky, G., Mihucz, V., & Záray, G. (2005). Investigation of adverse health effects of residual oil fly ash emitted from a heavy-oil-fuelled Hungarian power plant. Microchemical Journal, 79, 263–269.

    Article  Google Scholar 

  • Tian, L. (2005). Coal combustion emissions and lung cancer in Xuan Wei, China. PhD thesis, University of California: Berkeley, CA, 2005.

  • Tiede, K., Hassellöv, M., Breitbarthc, E., Chaudhryb, Q., & Boxall, A. B. A. (2009). Considerations for environmental fate and ecotoxicity testing to support environmental risk assessments for engineered nanoparticles. Journal of Chromatography A, 1216, 503–509.

    Article  CAS  Google Scholar 

  • Villa, R. D., Trovo, A. G., & Pupo, N. R. F. (2008). Environmental implications of soil remediation using the Fenton process. Chemosphere, 71, 43–50.

    Article  CAS  Google Scholar 

  • Warheit, D. B., Webb, T. R., & Reed, K. L. (2007). Pulmonary toxicity screening studies in male rats with M5 respirable fibers and particulates. Inhalation Toxicology, 19, 951.

    Article  CAS  Google Scholar 

  • Warheit, D. B., Reed, K. L., Sayes, C. M. (2009). A role for nanoparticle surface reactivity in facilitating pulmonary toxicity and development of a base set of hazard assays as a component of nanoparticle risk management. Inhalation Toxicology, 21, 61.

    Article  CAS  Google Scholar 

  • Waychunas, G., Kim, C., & Banfield, J. (2005a). Nanoparticulate iron oxide minerals in soils and sediments: Unique properties and contaminant scavenging mechanisms. Journal of Nanoparticle Research, 7, 409–433.

    Article  CAS  Google Scholar 

  • Waychunas, G., Trainor, T., Eng, P., Catalano, J., Brown, G., Davis, J., et al. (2005b). Surface complexation studied via combined grazing-incidence EXAFS and surface diffraction: Arsenate and hematite (0 0 0 1) and (1 0–1 2). Analytical and Bioanalytical Chemistry, 383, 12–27.

    Article  CAS  Google Scholar 

  • Xia, T., Lovochick, M., & Brant, J. (2006). Comparisons of the ability of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Letters, 6, 1794–1897.

    Article  CAS  Google Scholar 

  • Zhang, H., & Banfield, J. F. (2004). Aggregation, coarsening, and phase transformation in ZnS nanoparticles studied by molecular dynamics simulations. Nano Letters, 4, 713–718.

    Article  CAS  Google Scholar 

  • Zhang, H., Rustad, J. R., & Banfield, J. F. (2007). Interaction between water molecules and zinc sulfide nanoparticles studied by temperature-programmed desorption and molecular dynamics simulations. Journal of Physical Chemistry A, 111, 5008–5014.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis F. O. Silva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silva, L.F.O., da Boit, K.M. Nanominerals and nanoparticles in feed coal and bottom ash: implications for human health effects. Environ Monit Assess 174, 187–197 (2011). https://doi.org/10.1007/s10661-010-1449-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-010-1449-9

Keywords

Navigation