Skip to main content

Advertisement

Log in

Biochemical responses in tree foliage exposed to coal-fired power plant emission in seasonally dry tropical environment

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

A biomonitoring study was conducted to investigate the responses of plants exposed to power plant emission in a dry tropical environment. For this purpose, five sampling sites were selected in the prevailing wind direction (NE) at different distance to thermal power plant (TPP) within 8.0 km range and a reference site was selected in eastern direction at a distance of 22.0 km. The two most common tree species, Ficus benghalensis L. (Evergreen tree) and Dalbergia sisso Roxb. (deciduous tree) were selected as test plants. Ambient sulphur dioxide (SO2), nitrogen dioxide (NO2), suspended particulate matter (SPM), respirable suspended particulate matter (RSPM), dust-fall rate (DFR) and plant responses such as leaf pigments (chlorophyll a, chlorophyll b and carotenoids), ascorbic acid, sugar and sulphate–sulphur (\(\textnormal{SO}_{4}^{2-}-\textnormal{S}\)) contents were measured. Ambient SO2, NO2, SPM, RSPM and DFR showed significant spatial and temporal variation at different sites. Considerable reduction in pigment (chlorophyll a, chlorophyll b and carotenoids) and sugar contents were observed at sites receiving higher pollution load. Ascorbic acid exhibited significant positive correlation with pollution load. Accumulation of \(\textnormal{SO}_{4}^{2-}-\textnormal{S}\) in leaf tissue showed significant positive correlation with ambient SO2 concentration at all the sites. At the same time, \(\textnormal{SO}_{4}^{2-}-\textnormal{S}\) showed significant negative correlation with pigment and sugar content. D. sisso Roxb. tree was found to be more sensitive as compared to F. benghalensis L. tree.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agrawal, M., & Agrawal, S. B. (1989). Phytomonitoring of air pollution around a thermal power plant. Atmospheric Environment, 30, 763–769. doi:10.1016/0004-6981(89)90479-4.

    Google Scholar 

  • Agrawal, M., & Singh, J. (2000). Impact of coal power plant emission on the foliar elemental concentrations in plants in a low rainfall tropical region. Environmental Monitoring and Assessment, 60, 261–282. doi:10.1023/A:1006135317896.

    Article  CAS  Google Scholar 

  • Asada, K., & Kiso, K. (1973). Initiation of aerobic oxidation of sulfite by illuminated spinach chloroplasts. European Journal of Biochemistry, 33, 253–257. doi:10.1111/j.1432-1033.1973.tb02677.x.

    Article  CAS  Google Scholar 

  • Backett, K. P., Free-smith, P. H., & Taylor, G. (1998). Urban woodlands: Their role in reducing the effect of particulate pollution. Environmental Pollution, 99, 347–306. doi:10.1016/S0269-7491(98)00016-5.

    Google Scholar 

  • Banerjee, S., Singh, A. K., & Banerjee, S. K. (2003). Impact of flyash on foliar chemical and biochemical composition of naturally occurring ground flora and its possible utilization for growing tree crop. Indian Forester, 129, 964–977.

    Google Scholar 

  • Bansal, S. (1988). Studies on the effect of certain atmospheric pollutants on fruit diseases of Lycopersicon esculentum Mill. Caused by Alternaria alternata, PhD thesis. Bhopal, India: Bhopal University.

  • Bermadinger, E., Guttenberger, H., & Grill, D. (1990). Physiology of young Norway spruce. Environmental Pollution, 68, 319–330. doi:10.1016/0269-7491(90)90034-A.

    Article  CAS  Google Scholar 

  • Calvin, M. (1955). Function of carotenoids in photosynthesis. Nature, 176, 1211. doi:10.1038/1761215a0.

    Article  Google Scholar 

  • Cicek, A., & Koparal, A. S. (2004). Accumulation of sulfur and heavy metals in soil and tree leaves sampled from the surroundings of Tunçbilek Thermal Power Plant. Chemosphere, 57, 1031–1036. doi:10.1016/j.chemosphere.2004.07.038.

    Article  CAS  Google Scholar 

  • Cox, R. M. (2003). The use of passive sampling to monitor forest exposure to O3, NO2 and SO2: A review and some case studies. Environmental Pollution, 126, 301–311. doi:10.1016/S0269-7491(03)00243-4.

    Article  CAS  Google Scholar 

  • Dmuchowski, W., & Bytnerowricz, A. (1995). Monitoring environmental pollution in Poland by chemical analysis of Scots pine (Pinus sylvestris L.) needles. Environmental Pollution, 87, 87–104. doi:10.1016/S0269-7491(99)80012-8.

    Article  CAS  Google Scholar 

  • Down to Earth (2007). Fact sheet: Coal-based power plants pollute most. http://www.downtoearth.org.in/full6.asp?foldername=20070415&filename=news&sec_id=34&sid=42.

  • Dubios, M., Gilles, K. A., Hamilton, J. K., Roberts, P. A., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28, 350–356. doi:10.1021/ac60111a017.

    Article  Google Scholar 

  • Duxbury, A. C., & Yentsch, C. S. (1956). Plankton pigment monographs. Journal of Marine Research, 15, 91–101.

    Google Scholar 

  • Esmat, A. S. (1993). Damage to plants due to industrial pollution and their use as bioindicators in Egypt. Environmental Pollution, 81, 251–255. doi:10.1016/0269-7491(93)90207-5.

    Article  Google Scholar 

  • Farooq, M., Arya, K. R., Kumar, S., Gopal, K., Joshi, P. C., & Hans, R. K. (2000). Industrial pollutants mediated damage to mango (Mangifera indica) crop—a case study. Journal of Environmental Biology, 21, 165–167.

    Google Scholar 

  • Garg, S. S., Kumar, N., & Das, G. (2000). Effects of the Bansal Ramraj mill dust on vegetation and health at Jaitwara, District Satna (M.P). Indian Journal of Environmental Protection, 20, 326–328.

    CAS  Google Scholar 

  • Garty, J., Tamir, O., Hassid, I., Eshel, A., Cohen, Y., Karnieli, A., et al. (2001). Photosynthesis, chlorophyll integrity, and spectral reflectance in lichens exposed to air pollution. Journal of Environmental Quality, 30, 884–893.

    Article  CAS  Google Scholar 

  • Gavali, J. G., Saha, D., & Krishnayya, K. (2002). Difference in sulphur accumulation in eleven tropical tree species growing in polluted environs. Indian Journal of Environmental Health, 44, 88–91.

    CAS  Google Scholar 

  • Gupta, M. C., & Ghouse, A. K. M. (1987). The effect of coal-smoke pollutants on growth yield and leaf epidermis features of Abelmoschus esculentus Moench. Environmental Pollution, 43, 263–270. doi:10.1016/0269-7491(87)90179-5.

    Article  CAS  Google Scholar 

  • Halliwell, B., & Gutteridge, J. M. C. (1989). Free radicals in medicine and biology 2nd ed. (pp. 277–289). Oxford: Clarendon.

    Google Scholar 

  • Härtling, S., & Schulz, H. (1995). Ascorbat-und Glutathiongehalt in verschiedenartig schadstoffbeeinflußten Nadeln von Pinus sylvestris L. Forstwissenschaftliches Centralblatt, 114, 40–49. doi:10.1007/BF02742210.

    Article  Google Scholar 

  • Hausladen, A., Madamanchi, N. R., Fellows, S., Alscher, R. G., & Amundson, R. G. (1990). Seasonal changes in antioxidants in red spruce as affected by ozone. The New Phytologist, 115, 447–458. doi:10.1111/j.1469-8137.1990.tb00470.x.

    Article  CAS  Google Scholar 

  • Hippeli, S., & Elstner, E. F. (1996). Mechanisms of oxygen activation during plant stress: Biochemical effects of air pollutants. Journal of Plant Physiology, 148, 249–257.

    CAS  Google Scholar 

  • Huve, K., Dittrich, A., Kindermann, G., & Herber, U. (1995). Detoxification of SO2 in conifers differing in SO2 tolerance: A comparison of Picea abies, Picea pungens and Pinus sylvestris. Planta, 195, 578–585. doi:10.1007/BF00195718.

    Article  Google Scholar 

  • Iqbal, M., Abdin, M. Z., Mahmooduzzafar, Yunus, M., & Agrawal, M. (1996). Resistance mechanisms in plants against air pollution. In M. Yunus & M. Iqbal (Eds.), Plant response to air pollution (pp. 195–240). Chichester: Wiley.

    Google Scholar 

  • Iqbal, M., Srivastava, P. S., & Siddiqi, T. O. (2000b). Anthropogenic stresses in the environment and their consequences. In M. Igbal, et al. (Eds.), Environmental hazards, plants and people (pp. 1–40). New Delhi: CBS Publishers.

    Google Scholar 

  • Keller, T., & Schwager, H. (1977). Air pollution and ascorbic acid. European Journal of Forest Pathology, 7, 338–350. doi:10.1111/j.1439-0329.1977.tb00603.x.

    Article  CAS  Google Scholar 

  • Kondo, N., Akiyama, Y., Fujiwara, M., & Sugahara, K. (1980). Sulfite oxidizing activities in plants. In Studies on the effects of air pollutants in plants and mechanism of phytotoxicity. Research Report of Natural Environment Study Japan, 11, 137–150.

    CAS  Google Scholar 

  • Krinsky, N. I. (1966). The role of carotenoid pigments as protective agents against photosensitized oxidation in chloroplast. In T. W. Goodwin (Ed.), Biochemistry of chloroplasts (Vol. 1). New York: Academic.

    Google Scholar 

  • Legge, A. H., Bogner, J. C., & Krupa, S. V. (1988). Foliar sulphur species in pine: A new indicator of a forest ecosystem under air pollution stress. Environmental Pollution, 55, 15–27. doi:10.1016/0269-7491(88)90156-X.

    Article  CAS  Google Scholar 

  • Lewin, S. (1976). Vitamin C: Its molecular biology and medical potential. San Diego: Academic.

    Google Scholar 

  • Lorenc-Plucinska, G. (1982). Influence of SO2 on CO2 assimilation and carbon metabolism in photosynthetic processes in Scots pine. In Arboretum Kornickie (in Polish), rocznik, XXVII (pp. 285–310).

    Google Scholar 

  • Maclachlan, S., & Zalik, S. (1963). Plastid structure, chlorophyll concentration and free amino acid composition of a chlorophyll content of barley. Canadian Journal of Botany, 41, 1053–1062.

    Article  CAS  Google Scholar 

  • Madamanchi, N. R., Hausladen, A., Alscher, R. G., Amundson, R. G., & Fellows, S. (1991). Seasonal changes in antioxidants in red spruce (Picea rubens Sarg.) from three field sites in the northeastern United States. The New Phytologist, 118, 331–338. doi:10.1111/j.1469-8137.1991.tb00985.x.

    Article  CAS  Google Scholar 

  • Mashitha, P. M., & Pise, V. I. (2001). Biomonitoring of air pollution by correlating the pollution tolerance index of some commonly grown trees of an urban area. Pollution Research, 20, 195–197.

    CAS  Google Scholar 

  • Mass, F. M., Dekok, J. J., Strik-Timmer, W., & Kuiper, P. J. C. (1987). Plant responses to H2S and SO2 fumigation. II. Differences in metabolism of H2S and SO2 spinach. Physiologia Plantarum, 70, 722–728. doi:10.1111/j.1399-3054.1987.tb04330.x.

    Article  Google Scholar 

  • Merrymann, E. L., Spicer, C. W., & Levy, A. (1973). Evaluation of arsenite modified Jacobs Hochheiser procedure. Environmental Science & Technology, 7, 1056–1059. doi:10.1021/es60083a003.

    Article  Google Scholar 

  • Misra, R., & Behera, P. K. (1994). BioindicaihoAl of air pollution threat caused by industries ill western Orissa. Pollution Research, 13, 203–206.

    Google Scholar 

  • Nighat, F., Mahmooduzzafar, & Iqbal, M. (1999). Foliar responses of Peristrophe bicalyculata to coal smoke pollution. Journal of Plant Biology, 42, 205–212.

    Article  Google Scholar 

  • Nivane, S. Y., Chaudhari, P. R., Gajghate, D. G., & Tarar, J. L. (2001). Foliar biochemical features of plants as indicators of air pollution. Bulletin of Environmental Contamination and Toxicology, 67, 133–140. doi:10.1007/s001280101.

    Article  Google Scholar 

  • Nouchi, I. (1993). Changes in antioxidant levels and activities of related enzymes in rice leaves exposed to ozone. Soil Science and Plant Nutrition, 39, 309–320.

    CAS  Google Scholar 

  • Pal, A., Kulshreshtha, K., Ahmad, K. J., & Yunus, M. (2000). Changes in leaf surface structures of two avenue tree species caused by autoexhaust pollution. Journal of Environmental Biology, 21, 15–21.

    Google Scholar 

  • Pandey, D. D., Sinha, C. S., & Tiwari, M. G. (1991). Impact of coal dust pollution on biomass, chlorophyll and grain characteristics of rice. Journal of Biology, 3, 51–55 (Online).

    Google Scholar 

  • Pandey, J. (2005). Evaluation of air pollution phytotoxicity downwind of a phosphate fertilizer factory in India. Environmental Monitoring and Association, 100, 249–266. doi:10.1007/s10661-005-6509-1.

    Article  CAS  Google Scholar 

  • Pandey, J., & Agrawal, M. (1994). Evaluation of air pollution phytotoxicity in a seasonally dry tropical urban environment using three woody perennials. The New Phytologist, 126, 53–61. doi:10.1111/j.1469-8137.1994.tb07529.x.

    Article  CAS  Google Scholar 

  • Polle, A., Eiblmeier, B., & Rennenberg, H. (1984). Sulphate and antioxidants in needles of scots pine (Pinus sylvestris L.) from three SO2 polluted field sites in Eastern Germany. New Phytologist, 127, 571–577.

    Article  Google Scholar 

  • Prusty, B. A. K., Mishra, P. C., & Azeezb, P. A. (2005). Dust accumulation and leaf pigment content in vegetation near the national highway at Sambalpur, Orissa, India. Ecotoxicology and Environmental Safety, 60, 228–235. doi:10.1016/j.ecoenv.2003.12.013.

    Article  CAS  Google Scholar 

  • Puckett, K. J., Nieboer, E., Flora, W. P., & Richardson, D. H. S. (1973). Sulphur dioxide: Its effect on photosynthetic 14C fixation in lichens and suggested mechanism of phytotoxicity. The New Phytologist, 72, 141–154. doi:10.1111/j.1469-8137.1973.tb02019.x.

    Article  CAS  Google Scholar 

  • Rao, D. N., & Le Blanc, F. (1966). Effect of SO2 pollution on the lichen algae with special reference to chlorophyll. The Bryologist, 69, 69–75.

    Google Scholar 

  • Rao, M. V. (1992). Cellular detoxifying mechanisms determine the age dependent injury in tropical trees exposed to SO2. Journal of Plant Physiology, 140, 733–740.

    CAS  Google Scholar 

  • Rao, D. N., Agrawal, M., & Singh, J. (1990). Study of pollution sink efficiency, growth response and productivity pattern of plants with respect to flyash and SO 2 (Vol. 141, pp. 266–285). Final technical Report submitted to Ministry of Environment and Forest, India, DOE.

  • Rossum, J. R., & Villarruz, P. (1961). Suggested methods for turbidimetric determination of sulphate in water. Journal of the American Water Works Association, 53, 873.

    CAS  Google Scholar 

  • Sandelius, A. S., Naslund, K., Carlson, A. S., Pleijel, H., & Sellden, G. (1995). Exposure of spring wheat (Triticum aestivum) to ozone in open top chambers. Effects on acyl lipid composition and chlorophyll content of flag leaves. The New Phytologist, 131, 231–239. doi:10.1111/j.1469-8137.1995.tb05724.x.

    Article  CAS  Google Scholar 

  • Schiff, J. A., & Fankhauser, H. (1981). Assimilatory sulfate reduction. In H. Bothe and A. Trebst (Eds.), Biology of inorganic nitrogen and sulfur (pp. 153–168). Springer: Berlin.

    Google Scholar 

  • Senser, M., Kloos, M., & Lutz, C. (1990). Influence of soil substrate and ozone plus acid mist on the pigment content and composition of needles from young spruce trees. Environmental Pollution, 64, 295. doi:10.1016/0269-7491(90)90052-E.

    Article  CAS  Google Scholar 

  • Sharma, A. P., & Tripathi, B. D. (2008a). Magnetic mapping of fly-ash pollution and heavy metals from soil samples around a point source in a dry tropical environment. Journal of Environmental Monitoring and Assessment, 138(1–3), 31–39. doi:10.1007/s10661-007-9788-x.

    Article  CAS  Google Scholar 

  • Sharma, A. P., & Tripathi, B. D. (2008b). Assessment of atmospheric PAHs profile through Calotropis gigantea R.Br leaves in the vicinity of an Indian coal-fired power plant. Journal of Environmental Monitoring and Assessment. doi:10.1007/s10661-008-0224-7.

  • Sharma, A. P., & Tripathi, B. D. (2008c). Assessment of TSP-bound polychlorinated biphenyls (PCBs) in ambient air of a seasonally dry tropical urban-industrial area. AMBIO—A Journal of Human Environment, 37(4), (in press).

  • Shimazaki, K., Sakaki, T., Kondo, N., & Sugahara, K. (1980). Active oxygen participation in chlorophyll destruction and lipid peroxidation in SO2-fumigated leaves of spinach. Plant & Cell Physiology, 21(7), 1193–1204.

    CAS  Google Scholar 

  • Shin, F. B., & Park, W. C. (1989). Dose response relationship between rice plants and atmospheric pollution. In L. J. Brasser & W. C. Mulder (Eds.), Man and his ecosytem (Vol. 2, pp. 35–40). Amsterdam: Elsevier Sci. Publ.

    Google Scholar 

  • Shrivastava, N., & Joshi, S. (2002). Effect of automobile air pollution on the growth of some plants at Kota. Geobios, 29, 281–282.

    Google Scholar 

  • Siefermann-Harms, D. (1987). The light harvesting and protective functions of carotenoids in photosynthetic membranes. Physiologia Plantarum, 69, 561–568. doi:10.1111/j.1399-3054.1987.tb09240.x.

    Article  CAS  Google Scholar 

  • Singh, J. S., Singh, K. P., & Agrawal, M. (1991). Environmental degradation of the Obra-Renukoot-Singrauli areas, India and its impact on natural and derived ecosystem. The Environmentalist, 11(3), 171–180. doi:10.1007/BF01263230.

    Article  Google Scholar 

  • Singh, N., Singh, S. N., Srivastava, K., Yunus, M., Ahmad, K. J., Sharma, S. C., et al. (1990). Relative sensitivity and tolerance of some Gladiolus cultivars to sulphur dioxide. Annals of Botany, 65, 41–44.

    CAS  Google Scholar 

  • Smirnoff, N. (1996). The function and metabolism of ascorbic acid in plants. Annals of Botany, 78, 661–669. doi:10.1006/anbo.1996.0175.

    Article  CAS  Google Scholar 

  • Tanaka, K., Suda, Y., Kondo, N., & Sugahara, K. (1985). O3 tolerance and the ascorbate-dependent H2O2 decomposing system in chloroplasts. Plant & Cell Physiology, 26, 1425–1431.

    CAS  Google Scholar 

  • Varshney, C. K. (1985). Role of plants in indicating, monitoring and mitigating air pollution. In G. V. Subrahmanyam, D. N. Rao, C. K. Varshney & D. K. Biswas (Eds.), Air pollution and plants. A state of the art report, ministry of environment and forest, government of india (pp. 146–170).

  • Varshney, C. K., & Varshney, S. R. K. (1984). Effect of low levels of CO2 on glutamate dehydogenase in crop plants. Biochem. Physiol, 179, 433–437.

    CAS  Google Scholar 

  • West, P. W., & Gaeke, G. C. (1956). Fixation of sulfur dioxide as sulfitomercurate (II) and subsequent colorimetric estimation. Analytical Chemistry, 28, 1816–1819. doi:10.1021/ac60120a005.

    Article  CAS  Google Scholar 

  • Williams, A. J., & Banerjee, S. K. (1995). Effect of thermal power plant emission on the metabolic activities of Mangifera indica and Shorea robust. Environment and Ecology, 13, 914–919.

    Google Scholar 

  • Young, A. J., Britton, G., & Senser, M. (1988). Carotenoid composition of needles of Picea abies L. showing signs of photodamage. Zeitschrift f"ur Naturforschung, 45, 1111.

    Google Scholar 

  • Yu, S. W. (1988). Plant resistance to sulfur dioxide injury. In Perspectives in environmental botany (Vol. 2, pp. 251–282). New Delhi: Today and Tomorrow’s Printers and Publishers.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atul Prakash Sharma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, A.P., Tripathi, B.D. Biochemical responses in tree foliage exposed to coal-fired power plant emission in seasonally dry tropical environment. Environ Monit Assess 158, 197–212 (2009). https://doi.org/10.1007/s10661-008-0573-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-008-0573-2

Keywords

Navigation