Skip to main content

Advertisement

Log in

Plant invasions along roads: a case study from central highlands, India

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Road sides provide suitable conditions for the establishment and growth of non-native species. The phenomenon of non-native species spread through roads has further increased due to rapid anthropogenic developments. Here we intend to investigate the status of native and non-native species and how the species richness and diversity change in a perpendicular road transect across the three different road use types in the central highlands of India. Presence of 55 non-native species was recorded, of the total 71 species along the road sides. Non-native species richness significantly increased with increasing road use type. Although, the species diversity significantly decreased from road verges to the forest interior in all the road use types. Indicating the role of non-native propagule spread through the roads into the interior forest landscapes. The study gives a management implication, to restrict the non-native species spread from the road sides to the forest interior, irrespective of road use types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amor, R. L., & Stevens, P. L. (1975). Spread of weeds from a roadside into sclerophyll forest at Dartmouth, Australia. Weed Research, 16, 111–118. doi:10.1111/j.1365-3180.1976.tb00388.x.

    Article  Google Scholar 

  • Anonymous (2003). District of India. Retrieved on line from URL: www.statoids.com/yin.html Accessed on 5 June 2005.

  • Anonymous (2007). National Highways Authority of India, National Highways Development Project Map, retrieved on line from URL: http://www.nhai.org/roadnetwork.htm Accessed on 11 Feb 2007.

  • Arévalo, J. R., Delgado, J. D., Otto, R., Naranjo, A., Salas, M., & Fernández-Palacios, J. M. (2005). Distribution of alien vs. native plant species in roadside communities along an altitudinal gradient in Tenerife and Gran Canaria (Canary Islands). Perspectives in Plant Ecology, Evolution and Systematics, 7, 185–202. doi:10.1016/j.ppees.2005.09.003.

    Article  Google Scholar 

  • Beier, P., & Noss, R. F. (1998). Do habitat corridors provide connectivity? Conservation Biology, 12(6), 1241–1252. doi:10.1046/j.1523-1739.1998.98036.x.

    Article  Google Scholar 

  • Cantero, J. J., Liira, J., Cisneros, J. M., Gonzalez, J., Nuñez, C., Petryna, L., et al. (2003). Species richness, alien species and plant traits in Central Argentine mountain grasslands. Journal of Vegetation Science, 1, 129–136. doi:10.1658/1100-9233(2003)014[0129:SRASAP]2.0.CO;2.

    Article  Google Scholar 

  • Christen, D., & Matlack, G. (2006). The role of roadsides in plant invasions: A demographic approach. Conservation Biology, 20, 385–391. doi:10.1111/j.1523-1739.2006.00315.x.

    Article  Google Scholar 

  • Connell, J. H. (1978). Diversity in tropical rain forest and coral reefs. Science, 199, 1302–1310. doi:10.1126/science.199.4335.1302.

    Article  Google Scholar 

  • Curtis, J. T. (1959). The vegetation of Winconsin: An ordination of plant communities. Madison: University of Winconsin Press.

    Google Scholar 

  • Elton, C. (1958). The ecology of invasions by plants and animals. London: Methuen.

    Google Scholar 

  • Flory, S. L., & Clay, K. (2006). Invasive shrub distribution varies with distance to roads and stand age in eastern deciduous forests in Indiana, USA. Plant Ecology, 184, 131–141. doi:10.1007/s11258-005-9057-4.

    Article  Google Scholar 

  • Gelbard, J. L., & Belnap, J. (2003). Roads as conduits for exotic plant invasions in a semiarid landscape. Conservation Biology, 17, 420–432. doi:10.1046/j.1523-1739.2003.01408.x.

    Article  Google Scholar 

  • Gelbard, J. L., & Harrison, S. (2003). Roadless habitats as refuges for native grasslands: Interactions with soil, aspect, and grazing. Ecological Applications, 13, 404–415. doi:10.1890/1051-0761(2003)013[0404:RHARFN]2.0.CO;2.

    Article  Google Scholar 

  • Gilliam, F. S. (2007). The ecological significance of the herbaceous layer in temperate forest ecosystems. Bioscience, 57, 845–858. doi:10.1641/B571007.

    Article  Google Scholar 

  • Gonzalez, A., Lawton, J. H., Gilbert, F., Blackburn, T. M., & Evans-Freke, I. (1998). Metapopulation dynamics, abundance, and distribution in a microecosystem. Science, 281, 2045–2047. doi:10.1126/science.281.5385.2045.

    Article  CAS  Google Scholar 

  • Hansen, M. J., & Clevenger, A. P. (2005). The influence of disturbance and habitat on the presence of non-native plant species along transport corridors. Biological Conservation, 125, 249–259. doi:10.1016/j.biocon.2005.03.024.

    Article  Google Scholar 

  • Harrison, S., Hohn, C., & Ratay, S. (2002). Distribution of exotic plants along roads in a peninsular nature reserve. Biological Invasions, 4(4), 425–430. doi:10.1023/A:1023646016326.

    Article  Google Scholar 

  • Hawbaker, T. J., & Radeloff, V. C. (2004). Roads and landscape pattern in northern Wisconsin: A comparison of four different road data sources. Conservation Biology, 18(5), 1233–1244. doi:10.1111/j.1523-1739.2004.00231.x.

    Article  Google Scholar 

  • Hawbaker, T. J., Radeloff, V. C., Hammer, R. B., & Clayton, M. K. (2004). Road density and landscape pattern in relation to housing density, land ownership, land cover, and soils. Landscape Ecology, 20, 609–625. doi:10.1007/s10980-004-5647-0.

    Article  Google Scholar 

  • Huston, M. A., & DeAngelis, D. L. (1994). Compettion and coexistence: The effects of resource transport and supply rates. American Naturalist, 144, 954–977. doi:10.1086/285720.

    Article  Google Scholar 

  • Jackson, B. D. (Ed.) (1895). Index kewensis. Oxford, UK: Clarendon Press.

    Google Scholar 

  • Kadmon, R., & Benjamini, Y. (2006). Effects of productivity and disturbance on species richness: A neutral model. American Naturalist, 167, 939–946. doi:10.1086/504602.

    Article  Google Scholar 

  • Kowarik, I., & von der Lippe, M. (2007). Pathways in plant invasions. In W. Nentwig (Ed.), Biological invasions, ecological studies (Vol. 193, pp. 29–47). Berlin, Germany: Springer.

    Google Scholar 

  • Lonsdale, W. M., & Lane, A. M. (1994). Tourist vehicles as vectors of weed seeds in Kakadu National Park, Northern Australia. Biological Conservation, 69, 277–283. doi:10.1016/0006-3207(94)90427-8.

    Article  Google Scholar 

  • May, R. M. (1973). Stability and complexity in model ecosystems. Princeton, NJ, USA: Princeton University Press.

    Google Scholar 

  • Milton, S. J. (2004). Grasses as invasive alien plants in South Africa. South African Journal of Science, 100, 69–75.

    Google Scholar 

  • Milton, S. J., & Dean, W. R. J. (1998). Alien plant assemblages near roads in arid and semi-arid South Africa. Diversity & Distributions, 4, 175–187. doi:10.1046/j.1472-4642.1998.00024.x.

    Article  Google Scholar 

  • Pauchard, A., & Alaback, P. B. (2004). Influence of elevation, land use, and landscape context on patterns of alien plant invasions along roadsides in protected areas of south-central Chile. Conservation Biology, 18, 238–248. doi:10.1111/j.1523-1739.2004.00300.x.

    Article  Google Scholar 

  • Pauchard, A., & Shea, K. (2006). Integrating the study of nonnative plant invasions across spatial scales. Biological Invasions, 8, 399–413. doi:10.1007/s10530-005-6419-8.

    Article  Google Scholar 

  • Pyšek, P., & Hulme, P. E. (2005). Spatio-temporal dynamics of plant invasions: Linking pattern to process. Ecoscience, 12, 302–315. doi:10.2980/i1195-6860-12-3-302.1.

    Article  Google Scholar 

  • Raizada, P., Sharma, G. P., & Raghubanshi, A. S. (2008). Ingress of lantana in dry tropical forest fragments: Edge and shade effects. Current Science, 94, 180–182.

    Google Scholar 

  • Rentch, J. S., Fortney, R. H., Stephenson, S. L., Adams, H. S., Grafton, W. N., & Anderson, J. T. (2005). Vegetation–site relationships of roadside plant communities in West Virginia, USA. Journal of Applied Ecology, 42, 129–138. doi:10.1111/j.1365-2664.2004.00993.x.

    Article  Google Scholar 

  • Richardson, D. M., Pyšek, P., Rejmánek, M., Barbour, M. G., Panetta, F. D., & West, C. J. (2000). Naturalization and invasion of alien plants: concepts and definitions. Diversity & Distributions, 6, 93–107. doi:10.1046/j.1472-4642.2000.00083.x.

    Article  Google Scholar 

  • Robinson, G. R., & Quinn, J. F. (1988). Extinction, turnover and species diversity in an experimentally fragmented California grassland. Oecologia, 76, 71–82.

    Google Scholar 

  • Shannon, C. E., & Weaver, W. (1949). The mathematical theory of communication. Urbana, Illinois: University of Illinois Press.

    Google Scholar 

  • Sharma, G. P., & Raghubanshi, A. S. (2006). Tree population structure, regeneration and expected future composition at different levels of Lantana camara L. invasion in the Vindhyan tropical dry deciduous forest of India. Lyonia, 11, 25–37.

    Google Scholar 

  • Sharma, G. P., & Raghubanshi, A. S. (2007). Effect of Lantana camara L. cover on local depletion of tree population in the Vindhyan tropical dry deciduous forest of India. Applied Ecology and Environmental Research, 5(1), 109–121.

    Google Scholar 

  • Sharma, G. P., Raghubanshi, A. S., & Singh, J. S. (2005b). Lantana invasion: An overview. Weed Biology and Management, 5, 157–167. doi:10.1111/j.1445-6664.2005.00178.x.

    Article  Google Scholar 

  • Sharma, G. P., Singh, J. S., & Raghubanshi, A. S. (2005a). Plant invasions: Emerging trends and future implications. Current Science, 88, 726–734.

    Google Scholar 

  • Singh, A. K., Raghubanshi, A. S., & Singh, J. S. (2002). Medical ethnobotany of the tribals of Sonaghati of Sonbhadra district, Uttar Pradesh, India. Journal of Ethnopharmacology, 81(1), 31–41. doi:10.1016/S0378-8741(02)00028-4.

    Article  CAS  Google Scholar 

  • Stohlgren, T. J., Binkley, D., Chong, G. W., Kalkhan, M. A., Schell, L. D., Bull, K. A., et al. (1999). Exotic plant species invade hotspots of native plant diversity. Ecological Monographs, 69, 25–46.

    Article  Google Scholar 

  • Timmins, S. M., & Williams, P. A. (1991). Weed numbers in New Zealand’s forest and scrub reserves. New Zealand Journal of Ecology, 15, 153–162.

    Google Scholar 

  • Trombulak, S. C., & Frissell, C. A. (2000). Review of ecological effects of roads on terrestrial and aquatic communities. Conservation Biology, 14, 18–30. doi:10.1046/j.1523-1739.2000.99084.x.

    Article  Google Scholar 

  • von der Lippe, M., & Kowarik, I. (2007). Long-distance dispersal of plants by vehicles as a driver of plant invasions. Conservation Biology, 21, 986–996. doi:10.1111/j.1523-1739.2007.00722.x.

    Article  Google Scholar 

  • von der Lippe & Kowarik, I. (2008). Do cities export biodiversity? Traffic as dispersal vector across urban–rural gradients. Diversity & Distributions, 14, 18–25.

    Article  Google Scholar 

  • Von Holle, B., & Simberloff, D. (2005). Ecological resistance to biological invasion overwhelmed by propagule pressure. Ecology, 86, 3212–3218. doi:10.1890/05-0427.

    Article  Google Scholar 

  • Wenny, D. G. (2001). Advantages of seed dispersal: A re-evaluation of directed dispersal. Evolutionary Ecology Research, 3, 51–74.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gyan P. Sharma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, G.P., Raghubanshi, A.S. Plant invasions along roads: a case study from central highlands, India. Environ Monit Assess 157, 191–198 (2009). https://doi.org/10.1007/s10661-008-0527-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-008-0527-8

Keywords

Navigation