Skip to main content
Log in

On Poisson’s Ratio in Linearly Viscoelastic Solids

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

Poisson’s ratio in viscoelastic solids is in general a time dependent (in the time domain) or a complex frequency dependent quantity (in the frequency domain). We show that the viscoelastic Poisson’s ratio has a different time dependence depending on the test modality chosen; interrelations are developed between Poisson’s ratios in creep and relaxation. The difference, for a moderate degree of viscoelasticity, is minor. Correspondence principles are derived for the Poisson’s ratio in transient and dynamic contexts. The viscoelastic Poisson’s ratio need not increase with time, and it need not be monotonic with time. Examples are given of material microstructures which give rise to designed time dependent Poisson’s ratios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pipkin, A.C.: Lectures on Viscoelasticity Theory. Springer, Berlin Heidelberg New York (1972)

    MATH  Google Scholar 

  2. Adams, R.D., Peppiatt, N.A.: Effect of Poisson’s ratio strains in adherends on stresses of an idealized lap joint. J. Strain Anal. 8, 134–139 (1973)

    Article  Google Scholar 

  3. Ferry, J.D.: Viscoelastic Properties of Polymers, 2nd edn. Wiley, New York (1970)

    Google Scholar 

  4. Lakes, R.S.: Viscoelastic Solids. CRC, Boca Raton, Florida (1998)

    Google Scholar 

  5. Hilton, H.H.: Implications and constraints of time-independent Poisson’s ratios in linear isotropic and anisotropic viscoelasticity. J. Elast. 63, 221–251 (2001)

    Article  MATH  Google Scholar 

  6. Tschoegl, N.W., Knauss, W., Emri, I.: Poisson’s ratio in linear viscoelasticity – A critical review. Mech. Time-Depend. Mater. 6, 3–51 (2002)

    Article  Google Scholar 

  7. Lu, H., Zhang, X., Knauss, W.G.: Uniaxial, shear, and Poisson relaxation and their conversion to bulk relaxation. Polym. Compos. 18, 211–222 (1997)

    Article  Google Scholar 

  8. Kugler, H., Stacer, R., Steimle, C.: Direct measurement of Poisson’s ratio in elastomers. Rubber Chem. Technol. 63, 473–487 (1990)

    Google Scholar 

  9. Sokolnikoff, I.S.: Mathematical Theory of Elasticity. Krieger, Malabar, Florida (1983)

    MATH  Google Scholar 

  10. Read Jr., W.T.: Stress analysis for compressible viscoelastic materials. J. Appl. Phys. 21, 671–674 (1950)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  11. Gross, B.: Mathematical Structure of the Theories of Viscoelasticity. Hermann, Paris (1968)

    Google Scholar 

  12. Timoshenko, S.P., Goodier, J.N.: Theory of Elasticity. McGraw-Hill, London (1982)

    Google Scholar 

  13. Chen, C.P., Lakes, R.S.: Holographic study of conventional and negative Poisson’s ratio metallic foams: Elasticity, yield, and micro-deformation. J. Mater. Sci. 26, 5397–5402 (1991)

    Article  Google Scholar 

  14. Gurtin, M.E., Sternberg, E.: On the linear theory of viscoelasticity. Arch. Ration. Mech. Anal. 11, 291–356 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  15. Anderson, D.L.: Theory of the Earth. Blackwell, Boston, Massachusetts (1989)

    Google Scholar 

  16. Gibson, L.J., Ashby, M.F.: Cellular Solids, 2nd edn. Cambridge University Press, Cambridge, UK (1997)

  17. Weiner, J.H.: Statistical Mechanics of Elasticity. Wiley, New York (1983)

    MATH  Google Scholar 

  18. Kolpakov, A.G.: On the determination of the averaged moduli of elastic gridworks. Prikl. Mat. Meh. 59, 969–977 (1985)

    MathSciNet  Google Scholar 

  19. Lakes, R.S.: Advances in negative Poisson’s ratio materials. Adv. Mater. (Weinheim, Germany) 5, 293–296 (1993)

    Article  Google Scholar 

  20. Lakes, R.S.: Foam structures with a negative Poisson’s ratio. Science 235, 1038–1040 (1987)

    Article  ADS  Google Scholar 

  21. Lakes, R.S.: The time dependent Poisson’s ratio of viscoelastic cellular materials can increase or decrease. Cell. Polym. 11, 466–469 (1992)

    Google Scholar 

  22. Biot, M.A.: General theory of three-dimensional consolidation. J. Appl. Phys. 12, 155–164 (1941)

    Article  ADS  Google Scholar 

  23. Zener, C.: Internal friction in solids. I. Theory of internal friction in reeds. Phys. Rev. 52, 230–235 (1937)

    Article  ADS  Google Scholar 

  24. Nye, J.F.: Physical Properties of Crystals. Oxford University Press, London, UK (1976)

  25. Zener, C., Otis, W., Nuckolls, R.: Internal friction in solids. III. Experimental demonstration of thermoelastic internal friction. Phys. Rev. 53, 100–101 (1938)

    Article  ADS  Google Scholar 

  26. Christensen, R.M.: Restrictions upon viscoelastic relaxation functions and complex moduli. Trans. Soc. Rheol. 16, 603–614 (1972)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. S. Lakes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lakes, R.S., Wineman, A. On Poisson’s Ratio in Linearly Viscoelastic Solids. J Elasticity 85, 45–63 (2006). https://doi.org/10.1007/s10659-006-9070-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-006-9070-4

Mathematics Subject Classifications (2000)

Key words

Navigation